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Foreword 

MANY READERS may not know the many dimensions of Martin 
Gardner's magic. To begin with, he is a superb sleight-of-hand art- 
ist and the inventor of hundreds of magic tricks. His earliest pub- 
lished pieces, written when he was in high school, were contribu- 
tions to The Sphinx, an American magic periodical. Martin enjoys 
performing close-up magic for those fortunate enough to know 
him. He likes to bounce a dinner roll on the floor (it bounces back 
up like a rubber ball), to swallow a table knife, or to link a bor- 
rowed finger ring onto a rubber band. He has a special fondness for 
tricks that seem to violate topological laws. 

A completely different kind of magic is Martin's ability to ex- 
plain significant mathematical ideas to laymen, always in a way 
that leaves them eager for more. Unlike many other popularizers 
of mathematics, professionals enjoy his writing as much as ama- 
teurs. When asked how he manages this, he insists that the secret 
is precisely his lack of advanced knowledge. In college he took not 
a single matllematics course. It was not until 1989 that he finally 
coauthored his first formal paper that reported new discoveries. 

Although self-taught in mathematics, Martin has influenced 
the lives of manyprofessionals, including both of us. In one case he 
converted a runaway teen-age magcian into a budding mathema- 
tician by publishing some of his mathematical magic ideas, and by 
later helping that same youth find his way into graduate work. In 
the other case, many fertile research problems have sprung from 
Martin's efforts to understand certain puzzles in order to create 
new ones. 

Martin's success did not come easily. After graduating from the 



University of Chicago in 1936 with a bachelor's degree in philoso- 
phy, he began his writing career as a newspaper reporter in Tulsa, 
and later as a writer in the University of Chicago's press relations 
office. After four years in the Navy during World War 11, he began 
selling fiction to Esquire, moved to Manhattan, and became one of 
the editors of Humpty DumptyS Magazine. After eight years of in- 
venting bizarre activity features and writing stories and poems for 
f ive-t~-eight-~ear  old readers, he began his celebrated column in 
Scientific American. Before then, our informants tell us, he lived 
for years in small, dingy sleeping rooms, wearing frayed collars 
and pants with holes, often limiting his lunch to coffee and a piece 
of Danish. 

Martin put a great deal of research effort into his ScientlficAmer- 
ican columns. He once told us that writing the column left him 
only a few working days a month. His main reason for retiring 
from the magazine was that he needed time to write books and ar- 
ticles about topics other than mathematics. H e  is now the author of 
more than forty volumes that range over such fields as science, phi- 
losophy, and literature as well as mathematics. His long out-of- 
print theological novel, The FZght of Peter Fromm was reissued in 
1989 by Farrar, Straus, and Giroux. Many of his books are collec- 
tions of literary essays and book reviews. 

We visited Martin recently and were struck by the enthusiasm 
and boyish wonder with which he  reacted to a magic sleight per- 
formed by one of us that he has not seen before-a curious method 
of false cutting of a deck of cards. At an age past seventy, he is as 
eager as he was in high school to master what magicians call a new 
and novel "move." 

RONALD L. GRAHAM 
AT&T Bell Laboratories 

and Rutgers University 
PERSI DIACONIS 

Harvard University 

Fall 1989 



Introduction 

THIS IS the eighth collection of my Mathematical Games col- 
umns that have been appearing monthly in Scientific American 
since December 1956. As in previous volumes, the columns have 
been corrected, updated, and enlarged to include bibliographies 
and valuable new material provided by loyal readers. 

One of those readers, not mathematically inclined but who 
likes to read the columns nonetheless, has often asked: "Why 
can't you, as a favor to readers like me, give us a glossary of 
some of the terms you frequently use but seldom define?" 

Okay, dear reader-here it is. The terms alphabetized below 
are so familiar to even the humblest mathematician that most 
readers of this book need give them no more than a passing 
glance. But if you are one of those adventuresome souls for 
whom most mathematics books are incomprehensible, but who 
for some strange reason have decided to look into this one, you 
may find it worthwhile to go over this brief, informal glossary 
before reading further. 

Algorithm: A procedure for solving a 
problem, usually by repeated steps 
that are enormously boring unless 
a computer is doing them for you. 
You are applying aigorithms when 
you multiply two big numbers, 
balance your checkbook, wash 
dishes, or mow the lawn. 

Combination: A subset of a set, con- 
sidered without regard to order. 
If the set is the alphabet, the sub- 

set CAT is the same three-object 
combination as CTA, ACT, TAC, 
and so on. 

Combinatorial mathematics (or combi- 
natorics): The study of arrange- 
ments of things. It  is particularly 
concerned with finding out 
whether an arrangement that 
meets specified requirements is 
possible, and if so, how many 
such arrangements are possible. 



Magic squares, for instance, are
solutions to ancient combinatorial
problems in number theory. Can the
digits 1 through 9 be placed in a
square array so that every row, col-
umn, and main diagonal has the
same sum? Yes. How many ways can
it be done? Only one if rotations and
reflections are not counted as differ-
ent. Can the nine digits be arranged
so no two sums are alike and the
sums are consecutive? No. 

Composite number: A positive integer
with two or more prime factors Put
another way, an integer  greater
than 1 that is not a prime. The first
composites are 4, 6, 8, 9, 10.

Counting numbers (or natural num-
bers): 1,2,3,4,….

Digits: The ten numbers 0, 1, 2, 3, 4,
5, 6, 7, 8, 9 are the ten decimal dig-
its. The two numbers 0, 1 are the
binary digits; 0, 1, 2 are the ternary
digits; and so on for the digits of
higher base systems. A base-12 nota-
tion has twelve digits.

Diophantine equation: An equation in
which the letters (unknown vari-
ables) stand for integers. Such equa-
tions are solved by “Diophantine
analysis.”

e: Next to pi, the most notorious tran-
scendental number. It is the limit of
(1 + 1/n)n as n increases without
limit. In decimal notation its value is
2.718281828… That crazy repeti-
tion of 1828 is sheer coincidence.

Integers: The counting numbers,
their negatives, and zero.

Irrational numbers: Real numbers
that are not integers or quotients of
integers. In decimal notation their
fractions go on forever and have no
repeating periods. Pi, e, and are
irrationals.

Modulo: When a number is said to
equal n (modulo k) it means that

when the number is divided by k it
has a remainder of n. For example,
17 = 5 (modulo 12) because 17 has
a remainder of 5 when divided by
12.

N-space: A Euclidean space of n di-
mensions. A line is 1-space, a plane
is 2-space, the world is in 3- space. A
tesseract is a 4-space hypercube.

Nonnegative integers: 0, 1, 2, 3, 4,
5,…

Order n: A way of classifying mathe-
matical objects by labeling them
with nonnegative integers. A chess-
board is a square array of order 8 if
we count the number of cells on a
side, order 9 if we count the lattice
lines on a side instead of cells.

Permutation: An ordered subset of a
set. If the set is the alphabet, CAT,
CTA, ACT, and so on are different
permutations of the same subset of
three letters. Red, blue, white is a
permutation of red, white, and blue.

Polyhedron: A solid figure bounded by
polygons. A tetrahedron is a 4-sided
polyhedron, a cube is a 6-sided one.

Prime: An integer, greater than 1, not
evenly divisible by an integer except
itself (plus or minus) and 1 (plus or
minus). The first positive primes are
2, 3, 5, 7, 11, 13, 17, 19,…. Two inter-
esting primes: l,234,567,891 and
11,111,111,111,111,111,111,111

Rational numbers: Numbers that are
integers or fractions with integers
above and below the line. In decimal
notation a rational number has
either no decimal fraction, or a
finite fraction, or a fraction with a
repeating period.

Real numbers: The rational and irra-
tional numbers. So called to contrast
them with imaginary numbers, such
as the square root of –1, even
though the imaginary numbers are
really just as real as the reals.

2
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Reciprocal: A fraction turned upside
down The reciprocal of 2/3 is 3/2.
The reciprocal of 3 (or 3/1) is 1/3.
The reciprocal of 1 is 1.

Set: Any collection of things such as
the real numbers, counting num-
bers, odd numbers, primes, the al-
phabet, the hairs on your head, the
words on this page, members of
Congress, and so on ad nauseam.

Singularity: The point at which some-
thing peculiar happens to an equa-
tion (or a physical process repre-

sented by the equation) when one
or more variables have certain val-
ues. If you toss a ball in the air it
reaches a singularity at the top of its
path because at that precise
moment its speed drops to zero.
According to relativity theory, no
spaceship can go faster than light
because at such a speed the equa-
tions for length, time, and mass
enter a singularity at which length
goes to zero, time stops, and mass
becomes infinite.

This introduction is about to enter the singularity at which it
abruptly stops.

Martin Gardner



FIGURE 1 
Frontispiece of Mind, Special Christmas Number, 1901 



C H A P T E R  1 

Nothing 
Nobody seems to know how to deal with it. (He would, 
of course.) 

-P. L. HEATH 

OUR TOPIC is nothing. By definition nothing does not exist, but 
the concepts we have of it certainly exist as concepts. In  mathe- 
matics, science, philosophy, and everyday life it turns out to be 
enormously useful to have words and symbols for such concepts. 

The closest a mathematician can get to nothing is by way of 
the null (or empty) set. It is not the same thing as nothing be- 
cause it has whatever kind of existence a set has, although it is 
unlike all other sets. It is the only set that has no members and 
the only set that is a subset of every other set. From a basket 
of three apples you can take one apple, two apples, three apples, 
or no apples. To an empty basket you can, if you like, add 
nothing. 

The null set denotes, even though it doesn't denote anything. 
For example, it denotes such things as the set of all square cir- 
cles, the set of all even primes other than 2, and the set of all 
readers of this book who are chimpanzees. In  general it denotes 
the set of all x's that satisfy any statement about x that is false 
for all values of x. Anything you say about a member of the 
null set is true, because it lacks a single member for which a 
statement can be false. 

The null set is symbolized by @. I t  must not be confused with 
0, the symbol for zero. Zero is (usually) a number that denotes 



the number of members of $3. The null set denotes nothing, but 
0 denotes the number of members of such sets, for example the 
set of apples in an empty basket. The set of these nonexisting 
apples is $3, but the number of apples is 0. 

A way to construct the counting numbers, discovered by the 
great German logician Gottlob Frege and rediscovered by Ber- 
trand Russell, is to start with the null set and apply a few sim- 
ple rules and axioms. Zero is defined as the cardinal number 
of elements in all sets that are equivalent to (can be put in 
one-to-one correspondence with) the members of the null set. 
After creating 0, 1 is defined as the number of members in all 
sets equivalent to the set whose only member is 0. Two is the 
number of members in all sets equivalent to the set containing 
0 and 1. Three is the number of members in all sets equivalent 
to the set containing 0, I, 2, and so on. In  general, an integer is 
the number of members in all sets equivalent to the set contain- 
ing all previous numbers. 

There are other ways of recursively constructing numbers by 
beginning with nothing, each with subtle advantages and dis- 
advantages, in large part psychological. John von Neumann, 
for example, shortened Frege's procedure by one step. He pre- 
ferred to define 0 as the null set, I as the set whose sole member 
is the null set, 2 as the set whose members are the null set and 
1, and so on. 

A few years ago John Horton Conway of the University of 
Cambridge hit on a remarkable new way to construct numbers 
that also starts with the null set. He first described his technique 
in a photocopied typescript of thirteen pages, "All Numbers, 
Great and Small." I t  begins: "We wish to construct all num- 
bers. Let us see how those who were good at constructing num- 
bers have approached the problem in the past." It ends with ten 
open questions, of which the last is: "Is the whole structure of 
any use?" 

Conway explained his new system to Donald E. Knuth, a 
computer scientist at Stanford University, when they happened 
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to meet at lunch one day in 1972. Knuth was immediately fasci- 
nated by its possibilities and its revolutionary content. In 1973 
during a week of relaxation in Oslo, Knuth wrote an introduc- 
tion to Conway's method in the form of a novelette. I t  was is- 
sued in paperback in 1974 by Addison-Wesley, which also pub- 
lishes Knuth's well-known series titled The Art of Computer 
Programming. I believe it is the only time a major mathemati- 
cal discovery has been published first in a work of fiction. A 
later book by Conway, On Numbers and Games, opens with an 
account of his number construction, then goes on to apply the 
theory to the construction and analysis of two-person games. 
(See my Scientific American column, September 1976.) 

Knuth's novelette, Surreal Numbers, is subtitled How Two 
Ex-Students Turned On to Pure Mathematics and Found Total 
Happiness. The book's primtiry aim, Knuth explains in a post- 
script, is not so much to teach Conway's theory as "to teach 
how one might go about developing such a theory." He contin- 
ues: "Therefore, as the two characters in this book gradually 
explore and build up Conway's number system, I have recorded 
their false starts and frustrations as well as their good ideas. I 
wanted to give a reasonably faithful portrayal of the important 
principles, techniques, joys, passions, and philosophy of mathe- 
matics, so I wrote the story as I was actually doing the research 
myself ." 

Knuth's two ex-mathematics students, Alice and Bill ( A  and 
B), have fled from the "system" to a haven on the coast of the 
Indian Ocean. There they unearth a half-buried black rock 
carved with ancient Hebrew writing. Bill, who knows Hebrew, 
manages to translate the opening sentence: "In the beginning 
everything was void, and J. H. W. H. Conway began to create 
numbers." JHWH is a transliteration of how the ancient He- 
brews wrote the name Jehovah. "Conway" also appears without 
vowels, but it was the most common English name Bill could 
think of that fitted the consonants. 

Translation of the "Conway stone" continues: "Conway said, 



'Let there be two rules which bring forth all numbers large and 
small. This shall be the first rule: Every number corresponds to 
two sets of previously created numbers, such that no member 
of the left set is greater than or equal to any member of the 
right set. And the second rule shall be this: One number is less 
than or equal to another number if and only if no member of 
the first number's left set is greater than or equal to the second 
number, and no member of the second number's right set is less 
than or equal to the first number.' And Conway examined these 
two rules he had made, and behold! they were very good." 

The stone's text goes on to explain how on the zero day Con- 
way created zero. He did it by placing the null set on the left 
and also on the right. I n  symbolic notation 0 = { @  () $31, where 
the vertical line divides the left and right sets. No member of 
the left @ is equal to or greater than a member of the right $3 
because @ has no members, so that Conway's first rule is satis- 
fied. Applying the second rule, it is easy to show that 0 is less 
than or equal to 0. 

On the next day, the stone reveals, Conway created the first 
two nonzero integers, 1 and -1. The method is simply to com- 
bine the null set with 0 in the two possible ways: 1 = {O I @ )  
and -1 = ($3 1 0). I t  checks out. Minus 1 is less than but not 
equal to 0, and 0 is less than but not equal to I. Now, of course, 
1 and -1 and all subsequently created numbers can be plugged 
back into the left-right formula, and in this way all the integers 
are constructed. With 0 and 1 forming the left set and @ on the 
right, 2 is created. With 0, 1, and 2 on the left and $3 on the 
right, 3 is created, and so on. 

At this point readers might enjoy exploring a bit on their 
own. Jill C. Knuth's illustration for the front cover of Surreal 
Numbers shows some huge boulders shaped to symbolize 
{O I I}. What number does this define? And can the reader 
prove that 1-1 I 1 } = 01 

"Be fruitful and multiply," Conway tells the integers. By 
combining them, first into finite sets, then into infinite sets, 
the "copulation" of left-right sets continues, aided by no more 



Nothing 19 

than Conway's ridiculously simple rules. Out pour all the rest of 
the real numbers: first the integral fractions, then the irrationals. 
At the end of aleph-null days a big bang occurs and the universe 
springs into being. That, however, is not all. Taken to infinity, 
Conway's construction produces all of Georg Cantor's transfinite 
numbers, all infinitesimal numbers (they are reciprocals of infi- 
nite numbers), and infinite sets of queer new quantities such as 
the roots of transfinites and infinitesimals! 

I t  is an astonishing feat of legerdemain. An empty hat rests 
on a table made of a few axioms of standard set theory. Conway 
waves two simple rules in the air, then reaches into almost 
nothing and pulls out an  infinitely rich tapestry of numbers 
that form a real and closed field. Every real number is sur- 
rounded by a host of new numbers that lie closer to it than any 
other "real" value does. The system is truly "surreal." 

"Man, that empty set sure gets around!" exclaims Bill. "I 
think I'll write a book called Properties of the Empty Set." This 
notion that nothing has properties is, of course, commonplace 
in philosophy, science, and ordinary language. Lewis Carroll's 
Alice may think it nonsense when the March Hare offers her 
nonexistent wine, or when the White King admires her ability 
to see nobody on the road and wonders why nobody did not ar- 
rive ahead of the March Hare because nobody goes faster than 
the hare. It is easy, however, to think of instances in which 
nothing actually does enter human experience in a positive 
way. 

Consider holes. An old riddle asks how much dirt is in a rec- 
tangular hole of certain dimensions. Although the hole has all 
the properties of a rectangular parallelepiped (corners, edges, 
faces with areas, volume, and so on), the answer is that there is 
no dirt in the hole. The various holes of our body are certainly 
essential to our health, sensory awareness, and pleasure. In 
Dorothy and the Wizard in Oz, the braided man, who lives on 
Pyramid Mountain in the earth's interior, tells Dorothy how 
he got there. He had been a manufacturer of holes for Swiss 



cheese, doughnuts, buttons, porous plasters, and other things. 
One day he decided to store a vast quantity of adjustable post- 
holes by placing them end to end in the ground, making a deep 
vertical shaft into which he accidentally tumbled. 

The mathematical theory behind Sam Loyd's sliding-block 
puzzle (15 unit cubes inside a 4-by-4 box) is best explained by 
regarding the hole as a moving cube. It  is analogous to what 
happens when a gold atom diffuses through lead. Bubbles of 
nothing in liquids, from the size of a molecule on up, can move 
around, rotate, collide, and rebound just like things. Negative 
currents are the result of free electrons jostling one another 
along a conductor, but holes caused by an absence of free elec- 
trons can do the same thing, producing a positive "hole cur- 
rent" that goes the other way. 

Lao-tzu writes in Chapter 11 of Tao T& Ching: 

Thirty spokes share the wheel's hub; 
It  is the center hole that makes it useful. 
Shape clay into a vessel; 
I t  is the space within that makes it useful. 
Cut doors and windows for a room; 
I t  is the holes which make it useful. 
Therefore profit comes from what is there; 
Usefulness from what is not there. 

Osborne Reynolds, a British engineer who died in 1912, in- 
vented an elaborate theory in which matter consists of micro- 
particles of nothing moving through the ether the way bubbles 
move through liquids. His two books about the theory, On an 
Inversion of Ideas as to the Structure of the Universe and The 
Sub-Mechanics of the Universe, both published by the Cam- 
bridge University Press, were taken so seriously that W. W. 
Rouse Ball, writing in early editions of his Mathematical Rec- 
reations and Essays, called the theory "more plausible than the 
electron hypothesis." 

Reynolds' inverted idea is less crazy than it sounds. P. A. M. 
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Dirac, in his famous theory that predicted the existence of anti- 
particles, viewed the positron (antielectron) as a hole in a con- 
tinuum of negative charge. When an electron and positron 
collide, the electron falls into the positron hole, causing both 
particles to vanish. 

The old concept of a "stagnant ether" has been abandoned by 
physicists, but in its place is not nothing. The "new ether" con- 
sists of the metric field responsible for the basic forces of nature, 
perhaps also for the particles. John Archibald Wheeler proposes 
a substratum, called superspace, of infinitely many dimensions. 
Occasionally a portion of it twists in such a peculiar way that it 
explodes, creating a universe of three spatial dimensions, 
changing in time, with its own set of laws and within which the 
field gets tied into little knots that we call "matter." On the 
microlevel, quantum fluctuations give space a foamlike struc- 
ture in which the microholes provide space with additional 
properties. There is still a difference between something and 
nothing, but it is purely geometrical and there is nothing be- 
hind the geometry. 

Empty space is like a straight line of zero curvature. Bend 
the line, add little bumps that ripple back and forth, and you 
have a universe dancing with matter and energy. Outside the 
utmost fringes of our expanding cosmos are (perhaps) vast re- 
gions unpenetrated by light and gravity. Beyond those regions 
may be other universes. Shall we say that these empty regions 
contain nothing, or are they still saturated with a metric of zero 
curvature? 

Greek and medieval thinkers argued about the difference be- 
tween being and nonbeing, whether there is one world or many, 
whether a perfect vacuum can properly be said to "exist," 
whether God formed the world from pure nothing or first cre- 
ated a substratum of matter that was what St. Augustine called 
prope nihil, or close to nothing. Exactly the same questions 
were and are debated by philosophers and theologians of the 
East. When the god or gods of an Eastern religion created the 
world from a great Void, did they shape nothing or something 



that was almost nothing? The questions may seem quaint, but 
change the terminology a bit and they are equivalent to present 
controversies. 

There are endless examples from the arts-some jokes, some 
not--of nothing admired as something. In 1951 Ad Reinhardt, 
a respected American abstractionist who died in 1967, began 
painting all-blue and all-red canvases. A few years later he 
moved to the ultimate--black. His all-black five-by-five-feet 
pictures were exhibited in 1963 in leading galleries in New 
York, Paris, Los Angeles, and London. [See Figure 2.) Al- 
though one critic called him a charlatan (Ralph F. Colin, 
"Fakes and Frauds in the Art World," Art in America, April 
1963), more eminent critics (Hilton Kramer, The Nation, June 
22, 1963, and Harold Rosenberg, The New Yorkm, June 15, 
1963) admired his black art. An "ultimate statement of esthetic 
purity," was how Kramer put it (The New York Times, Octo- 
ber 17, 1976) in praising an exhibit of the black paintings at 
the Pace Gallery. 

In 1965 Reinhardt had three simultaneous shows at top 
Manhattan galleries: one of all-blacks, one of all-reds, one of 
all-blues. Prices ranged from $1,500 to $12,000. (See News- 
week, March 15, 1965.) For the artist's defense of his black pic- 
tures, consult Americans, 1963, edited by Dorothy C. Miller 
(The Museum of Modern Art, New York, 1963), and Art as 
Art: The Selected Writings of Ad Reinhardt, edited by Barbara 
Rose (Viking, 1975). ( I  am indebted to Thomas B. Lemann for 
these references.) 

Since black is the absence of light, Reinhardt's black canvases 
come as close as possible to pictures of nothing, certainly much 
closer than the all-white canvases of Robert Rauschenberg and 
others. A New Yorker cartoon (September 23, 1944) by R. Tay- 
lor showed two ladies at an art exhibit, standing in front of an 
all-white canvas and reading from the catalogue: "During the 
Barcelona period he became enamored of the possibilities inher- 
ent in virgin space. With a courage born of the most profound 
respect for the enigma of the imponderable, he produced, at this 
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FIGURE 2 
Ad Reinhardt: Abstract Painting, 1960-61. Oil, 60" x 60". 

The Museum of Modern Art 



time, a series of canvases in which there exists solely an expanse 
of pregnant white." 

I know of no piece of "minimal sculpture" that is reduced to 
the absolute minimum of nothing, though I expect to read any 
day now that a great museum has purchased such a work for 
many thousands of dollars. Henry Moore certainly exploited 
the aesthetics of holes. In 1950 Ray Bradbury received the first 
annual award of The Elves', Gnomes' and Little Men's Science- 
Fiction Chowder and Marching Society at a meeting in San 
Francisco. The award was an invisible little man standing on 
the brass plate of a polished walnut pedestal. This was not en- 
tirely nothing, says my informant, Donald Baker Moore, be- 
cause there were two black shoe prints on the brass plate to 
indicate that the little man was actually there. 

There have been many plays in which principal characters 
say nothing. Has anyone ever produced a play or motion pic- 
ture that consists, from beginning to end, of an empty stage or 
screen? Some of Andy Warhol's early films come close to it, and 
I wouldn't be surprised to learn that the limit was actually at- 
tained by some early avant-garde playwright. 

John Cage's 4'33" is a piano composition that calls for four 
minutes and thirty-three seconds of total silence as the player 
sits frozen on the piano stool. The duration of the silence is 273 
seconds. This corresponds, Cage has explained, to -273 degrees 
centigrade, or absolute zero, the temperature at which all mo- 
lecular motion quietly stops. I have not heard 4'33'' performed, 
but friends who have tell me it is Cage's finest composition. 

There are many outstanding instances of nothing in print: 
Chapters 18 and 19 of the final volume of Tristram Shandy, 
for example. Elbert Hubbard's Essay on Silence, containing 
only blank pages, was bound in brown suede and gold-stamped. 
I recall as a boy seeing a similar book titled What I Know about 
Women, and a Protestant fundamentalist tract called What 
Must You Do to Be Lost? PoBme Collectif, by Robert Filliou, 
issued in Belgium in 1968, consists of sixteen blank pages. 

In  1972 the Honolulu Zoo distributed a definitive monograph 
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called Snakes of Hawaii: An authoritative, illustrated and com- 
plete guide to exotic species indigenous to the 50th State, by 
V .  Ralph Knight, Jr., B.S. A correspondent, Larry E. Morse, 
informs me that this entire monograph is reprinted (without 
credit) in The  Nothing Book. This volume of blank pages was 
published in 1974, by Harmony House, in regular and deluxe 
editions. I t  sold so well that in 1975 an even more expensive 
(five dollars) deluxe edition was printed on fine French marble 
design paper and bound in leather. According to The  Village 
Voice (December 30, 1974), Harmony House was threatened 
with legal action by a European author whose blank-paged 
book had been published a few years before T h e  Nothing Book. 
He believed his copyright had been infringed, but nothing ever 
came of it. 

Howard Lyons, a Toronto correspondent, points out that the 
null set has long been a favorite topic of song writers: "I ain't 
got nobody," "Nobody loves me," "I've got plenty of nothing," 
"Nobody lied when they said that I cried over you," "There 
ain't no sweet gal that's worth the salt of my tears," and hun- 
dreds of other lines. 

Events can occur in which nothing is as startling as a thun- 
derclap. An old joke tells of a man who slept in a lighthouse 
under a foghorn that boomed regularly every ten minutes. One 
night at 3:20 A.M., when the mechanism failed, the man leaped 
out of bed shouting, "What was that?" As a prank all the mem- 
bers of a large orchestra once stopped playing suddenly in the 
middle of a strident symphony, causing the conductor to fall sef 
the podium. One afternoon in a rural section of North Dakota, 
where the wind blew constantly, there was a sudden cessation 
of wind. All the chickens fell over. A Japanese correspondent 
tells me that the weather bureau in Japan now issues a "no- 
wind warning" because an absence of wind can create damag- 
ing smog. 

There are many examples that are not jokes. An absence of 
water can cause death. The loss of a loved one, of money, or of 
a reputation can push someone to suicide. The law recognizes 



innumerable occasions on which a failure to act is a crime. 
Grave consequences will follow when a man on a railroad track, 
in front of an approaching train and unable to decide whether 
to jump to the left or to the right, makes no decision. I n  the 
story "Silver Blaze," Sherlock Holmes based a famous deduc- 
tion on the "curious incident" of a dog that "did nothing in the 
night-time." 

Moments of escape from the omnipresent sound of canned 
music are becoming increasingly hard to obtain. Unlike cigar 
smoke, writes Edmund Morris in a fine essay, "Oases of Si- 
lence in a Desert of Din" (The New York Times, May 25, 
1975), noise can't be fanned away. There is an old joke about 
a jukebox that offers, for a quarter, to provide three minutes of 
no music. Drive to the top of Pike's Peak, says Morris, "whose 
panorama of Colorado inspired Katharine Lee Bates to write 
'America the Beautiful,' and your ears will be assailed by the 
twang and boom of four giant speakers-N, S, E, and W- 
spraying cowboy tunes into the crystal air." Even the Sistine 
Chapel is now wired for sound. 

L'At first," continues Morris, "there is something discomfort- 
ing, almost frightening, about real silence. . . . You are star- 
tled by the apparent loudness of ordinary noises. . . . Gradu- 
ally your ears become attuned to a delicate web of sounds, 
inaudible elsewhere, which George Eliot called 'that roar which 
lies on the other side of silence.' " Morris provides a list of a 
few Silent Places around the globe where one can escape not 
only from Muzak but from all the aural pollution that is the by- 
product of modern technology. 

These are all examples of little pockets in which there is an 
absence of something. What about that monstrous dichotomy 
between all being-everything there is-and nothing? From 
the earliest times the most eminent thinkers have meditated on 
this ultimate split. I t  seems unlikely that the universe is going 
to vanish (although I myself once wrote a story, "Oom," about 
how God, weary of existing, abolished everything, including 
himself), but the fact that we ourselves will soon vanish is real 
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enough. I n  medieval times the fear of death was mixed with a 
fear of eternal suffering, but since the fading of hell (albeit it is 
now enjoying a renaissance) this fear has been replaced by 
what Soren Kierkegaard called an "anguish or "dread" over 
the possibility of becoming nothing. 

This brings us abruptly to what Paul Edwards has called the 
"superultimate question." "Why," asked Leibniz, Schelling, 
Schopenhauer, and a hundred other philosophers, "should 
something exist rather than nothing?" 

Obviously it is a curious question, not like any other. Large 
numbers of people, perhaps the majority, live out their lives 
without ever considering it. If someone asks them the question, 
they may fail to understand it and believe the questioner is 
crazy. Among those who understand the question, there are 
varied responses. Thinkers of a mystical turn of mind, the late 
Martin Heidegger for instance, consider it the deepest, most 
fundamental of all metaphysical questions, and look with con- 
tempt on all philosophers who are not equally disturbed by it. 
Those of a positivistic, pragmatic turn of mind consider it triv- 
ial. Since everyone agrees there is no way to answer it empiri- 
cally or rationally, it is a question without cognitive content, as 
meaningless as asking if the number 2 is red or green. Indeed, 
a famous paper by Rudolf Carnap on the meaning of questions 
heaps scorn on a passage in which Heidegger pontificates about 
being and nothingness. 

A third group of philosophers, including Milton K. Munitz, 
who wrote an entire book titled The Mystery of Existence, re- 
gards the question as being meaningful but insists that its sig- 
nificance lies solely in our inability to answer it. It may or may 
not have an answer, argues Munitz, but in any case the answer 
lies totally outside the limits of science and philosophy. 

Whatever their metaphysics, those who have puzzled most 
over the superultimate question have left much eloquent testi- 
mony about those unexpected moments, fortunately short-lived, 
in which one is suddenly caught up in an overwhelming aware- 
ness of the utter mystery of why anything is. That is the terrify- 



ing emotion at the heart of Jean-Paul Sartre's great philosophi- 
cal novel Nausea. Its red-haired protagonist, Antoine Roquentin, 
is haunted by the superultimate mystery. "A circle is not 
absurd," he reflects. "It is clearly explained by the rotation of a 
straight segment around one of its extremities. But neither does 
a circle exist." Things that do exist, such as stones and trees and 
himself, exist without any reason. They are just insanely there, 
bloated, obscene, gelatinous, unable not to exist. When the mood 
is on him, Roquentin calls it "the nausea." William James had 
earlier called it an "ontological wonder sickness." The monoto- 
nous days come and go, all cities look alike, nothing happens 
that means anything. 

G. K. Chesterton is as good an example as any of the theist 
who, stunned by the absurdity of being, reacts in opposite fash- 
ion. Not that shifting to God the responsibility for the world's 
existence answers the superultimate question; far from it! One 
immediately wonders why God exists rather than nothing. But 
although none of the awe is lessened by hanging the universe 
on a transcendent peg, the shift can give rise to feelings of grat- 
itude and hope that relieve the anxiety. Chesterton's existential 
novel Manaliue is a splendid complement to Sartre's Nausea. 
Its protagonist, Innocent Smith, is so exhilarated by the priv- 
ilege of existing that he goes about inventing whimsical ways 
of shocking himself into realizing that both he and the world 
are not nothing. 

Let P. L. Heath, who had the first word in this article, also 
have the last. "If nothing whatsoever existed," he writes at the 
end of his article on nothing in The  Encyclopedia of Philosophy, 
"there would be no problem and no answer, and the anxieties 
even of existential philosophers would be permanently laid to 
rest. Since they are not, there is evidently nothing to worry 
about. But that itself should be enough to keep an existentialist 
happy. Unless the solution be, as some have suspected, that it is 
not nothing that has been worrying them, but they who have 
been worrying it." 
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More Ado About Nothing 

You ain't seen nothin' yet. 
-AL JOLSON 

THE PREVIOUS CHAPTER, when it first appeared in Scientific 
American (February 1975), prompted many delightful letters 
on aspects of the topic I had not known about or had failed to 
mention. Some of this information has been worked into Chap- 
ter 1. Here is more. 

Hester Elliott was the first of several readers who were re- 
minded, by my story of the lighthouse keeper, of what some 
New Yorkers used to call the "Bowery El phenomenon." After 
the old elevated on Third Avenue was torn down, police began 
receiving phone calls from people who lived near the El. They 
were waking at regular intervals during the night, hearing 
strange noises, and having strong feelings of foreboding. "The 
schedules of the absent trains," as Ms. Elliott put it, "reap- 
peared in the form of patterned calls on the police blotters." 
This is discussed, she said, by Karl Pribram in his book Lan- 
guages of the Brain as an example of how our brain, even dur- 
ing sleep, keeps scanning the flow of events in the light of past 
expectations. It is aroused by any sharp deviation from the ac- 
customed pattern. 

Psychologist Robert B. Glassman also referred in a letter to 
the El example, and gave others. The human brain, he wrote, 
has the happy facility of forgetting, of pushing out of conscious- 



ness whatever seems irrelevant at the moment. But the irrele- 
vant background is still perceived subliminally, and changes in 
this background bring it  back into consciousness. Russian psy- 
chologists, he said, have found that if a human or animal listens 
long enough to the repeated sound of the same tone, they soon 
learn to ignore it. But i f  the same tone is then sounded in a dif- 
ferent way, even i f  sounded more softly or more briefly, there is 
instant arousal. 

Vernon Rowland, a professor of psychology at Case Western 
Reserve, elaborated similar points. His letter, which follows, 
was printed i n  Scientific American, April 1975: 
SIRS: 

I enjoyed Martin Gardner's essay on "nothing." John Horton 
Conway's rule and Gardner's analysis of "nothing" are, like all 
human activity, expressions of the nervous system, the study 
of which helps i n  understanding the origins and evolution of 
"nothing." 

T h e  brain is marvelously tuned to detect change as well as 
constancies in  the environment. Sharp change between constan- 
cies is a perceptually or intellectually recognizable boundary. 
"Nothing'' is "knowable" with clarity only if it is well demar- 
cated from the "non-nothing." Even if it is vaguely bounded, 
nothingness cannot be treated as an absolute. This is an exam- 
ple of the illogicality of absolutes, because "nothing" cannot be 
i n  awareness except as it is related to (contrasted with) non- 
nothing. 

One can observe in the brains of perceiving animals, even 
animals as primitive as the frog, special neurons responding 
specifically to spatial boundaries and to temporal boundaries. 
In  the latter, for instance, neurons called "off" neurons, go into 
action when "something," say light, becomes "nothing" (dark- 
ness). "Nothing" is therefore positively signaled and is thereby 
endowed with existence. T h e  late Polish neuropsychologist 
Jerzy Konorski pointed out the possibility that closing the eyes 
may activate off neurons, giving rise to "seeing" darkness and 
recognizing it as being different from not seeing at all. 
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I and others have used temporal nothingness as a food signal 
for cats by  simply imposing 10 seconds of silence in an  other- 
wise continuously clicking environment. Their brains show the 
learning of the significance of this silence in ways very similar 
to those for the inverse: 10 seconds of clicking presented on a 
continuous background of silence. "Nothing" and "something" 
can be treated in the same way as psychologists deal with other 
forms of figure-ground or stimulus-context reversal. 

T h e  nothingness of which we become aware by  specific brain 
signals can be known only b y  discriminating it from other brain 
signals that reveal the boundaries and constancies of existing 
objects. This  requires an act of attention. There is another form 
of "nothing" that is based on an attentional shift from one sense 
modality to another (as in  the example of listening to music) 
or to a failure of the attentional mechanism. I n  certain forms 
of strokes the person "forgets" one part of his body and acts as 
if it simply does not exist, for example a man who shaves only 
one half of his face. 

Animate systems obtain and conserve life-supporting energy 
b y  evolving mechanisms to ofJset or counter perturbations i n  
their energy supply. Detecting absences ("nothings") in  the 
energy domain had to be acquired early or survival could not 
have gone beyond the stage of actually living in the energy sup- 
ply (protozoa i n  nutritious pools) rather than near it (animals 
that can leave the water and return). 

If this pragmatic view of the biopsycho2ogical origins of 
"nothing" and "absence" is insuficient for trivializing the Leib- 
nizian question ( "Why  should something exist rather than 
nothing?"), I would argue that the philosopher faces the neces- 
sity of showing that the statement "Nothing [in the absolute 
sense] exists" is not a self-contradiction. 

The reference to my story "Oom" reminded Ms. Elliott of the 
following paragraph from Jorge Luis Borges' essay on John 
Donne's Biathanatos (a work which argues that Jesus com- 
mitted suicide), in Other Inquisitions, 1937-1952: 



As I reread this essay, I think of the tragic Philipp Batz, who 
is called Philipp Mainlander i n  the history of philosophy. Like 
me, he was an impassioned reader of Schopenhauer, under 
whose influence (and perhaps under the influence of the Gnos- 
tics) he imagined that we are fragments of a God who destroyed 
Himself at the beginning of time, because He did not wish to 
exist. Uniuersal history is the obscure agony of those fragments. 
Mainlander was born in 1841; in 1876 he published his book 
Philosophy of the Redemption. That same year he  killed him- 
self. 

Is Mainlander one of Borges' invented characters? NO, he ac- 
tually existed. You can read about him and his strange two- 
volume work in T h e  Encyclopedia of Philosophy, Vol. 6 ,  page 
119. 

Several readers informed me of the amusing controversy 
among graph theorists over whether the "null-graph" is useful. 
This is the graph that has no points or edges. The classic refer- 
ence is a paper by Frank Harary and Ronald C. Read, "Is the 
Null-Graph a Pointless Concept?" (The paper was given at the 
Graphs and Combinatorial Conference, at George Washington 
University, in 1973, and appears in the conference lecture notes, 
published by Springer-Verlag.) 

"Note that it is not a question of whether the null-graph 
'exists,' " the authors write. "It is simply a question of whether 
there is any point in it." The authors survey the literature, give 
pros and cons, and finally reach no conclusion. Figure 3, repro- 
duced from their paper, shows what the null-graph looks like. 

Wesley Salmon, the philosopher of science, sent a splendid 
ontological argument for the existence of the null set: 

I haue just finished reading, with much pleasure, your col- 
u m n  on "nothing." It reminded me of a remark made b y  a bril- 
liant young philosopher at the University of Toronto, Bas van 
Fraassen, who, in a lecture on philosophy of mathematics, asked 
w h y  there might not be a sort of ontological proof for the exist- 
ence of the null set. It would begin, "By  the null set we under- 
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FIGURE 3 
The null-graph 

stand that set than which none emptier can be conceived . . ." 
Van Praassen is editor in chief of the Journal of Philosophical 
Logic. I sent him the completion of the argument: 

"The fool hath said in his heart that there is no null set. But 
if that were so, then the set of all such sets would be empty, and 
hence, it would be the null set. Q.E.D." 

I still do not know why he did not publish this profound re- 
sult. 

Frederick IVIosteller, a theoretical statistician at Harvard, 
made the following comments on the superultimate question: 

Ever since I was about fourteen years old I have been se- 
verely bothered by this question, and by and large not willing to 



talk to other people about it because the first few times I tried 
I got rather unexpected responses, mainly rather negative put- 
downs. It shook me up when it first occurred to me, and has 
bothered me again and again. I could not understand w h y  it 
wasn't in  the newspapers once a week. I suppose, i n  a sense, all 
references to creation are a reflection of this same issue, but it is 
the simplicity of the question that seems to m e  so scary. 

W h e n  I was older I tried it once or twice on  physicists and 
again did not get much of a response-probably talked to the 
wrong ones. I did mention it to John Tukey  once, and he  oflered 
a rather good remark. He said something like this: contemplat- 
ing the question at this time doesn't seem to be producing much 
information-that is, we aren't making much progress with it- 
and so it is hard to spend time on it. Perhaps it is not yet a prof- 
itable question. 

It seems so much more reasonable to me that there should be 
nothing than something that I have secretly concluded for my- 
self that quite possibly physicists will ultimately prove that, 
were there a system containing nothing, it would automatically 
create a physical universe. (Of course, I know they can't quite 
do this.) 



C H A P T E R  3 

Game Theory, Guess It, 
Foxholes 

THE THEORY 

GAME THEORY, one of the most useful branches of modern math- 
ematics, was anticipated in the early 1920's by the French 
mathematician Emile Borel, but it was not until 1926 that John 
von Neumann gave his proof of the minimax theorem, the fun- 
damental theorem of game theory. On this cornerstone he built 
almost single-handedly the beautiful basic structure of game 
theory. His classic 1944 work, Theory of Games and Economic 
Behavior, written with the economist Oskar Morgenstern, cre- 
ated a tremendous stir in economic circles (see "The Theory of 
Games," by Oskar Morgenstern, Scientific American, May 
1949). Since then game theory has developed into a fantastic 
amalgam of algebra, geometry, set theory, and topology, with 
applications to competitive situations in business, warfare, and 
politics as well as economics. 

Attempts have been made to apply game theory to all kinds 
of other conflict situations. What is the nation's optimal strategy 
in the Cold War Game? Is the Golden Rule, some philosophers 
have asked, the best strategy for maximizing happiness payoffs 
in the Great Game of Life? How can a scientist best play the 
Induction Game against his formidable opponent Nature? Even 
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psychiatry has not been immune. Although Eric Berne's "trans- 
actional therapy" (popularized by his best-selling Games Peo- 
ple Play) makes no use of game theory mathematics, it borrows 
many of its terms from, and obviously has been influenced by, 
the game theory approach. 

Most game theory work has been on what are called two- 
person zero-sum games. This means that the conflict is between 
two players (if there are more, the theory gets muddied by 
coalitions) and whatever one player wins the other loses. (One 
reason game theory is difficult to apply to international conflicts 
is that they are not zero-sum; a loss for the U.S.S.R. is not neces- 
sarily a gain for the United States, for example.) The main pur- 
pose of this chapter is to present an interesting two-person 
zero-sum card game invented by Rufus Isaacs, a game theory 
expert who wrote Differential Games (John Wiley, 1965) and 
is professor of applied mathematics at Johns Hopkins University. 
But first a quick look at some elementary game theory. 

Consider this trivial game. Players A and B simultaneously 
extend one or two fingers, then B gives A as many dollars as 
there are fingers showing. The game obviously is unfair since 
A always wins. How, though, should A play so as to make his 
wins as big as possible, and how should B play so as to lose as 
little as possible? Most games have numerous and complicated 
strategies, but here each player is limited to two: he can show 
one finger or he can show two. The "payoff matrix" can there- 
fore be drawn on a 2-by-2 square as shown in Figure 4, left. 
By convention, A's two strategies are shown on the left and B's 
two strategies are shown above. The cells hold the payoffs for 
every combination of strategies. Thus if A shows one finger and 
B two, the intersection cell shows a $3 payoff to A. (Payoffs are 
always given as payments from B to A even when the money 
actually goes the other way, in which case the payment to B is 
indicated by a minus sign.) 

If A plays one finger, the least he can win is 2. If he plays 
two fingers, the least he can win is 3. The largest of these lows 
(the 3 at lower left) is called the maxmin (after maximum of 
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Payoff matrix Matrix for Matrix 
for a trivial game odds-and-evens game for card game 

FIGURE 4 

the minima). If B plays one finger, the most he can lose is 3. 
If he plays two fingers, the most he can lose is 4. The least of 
these highs (again the 3 at lower left) is called the minmax 
(minimum of the maxima). If the cell that holds the minmax 
is also the cell that holds the maxmin, as it is in this case, the 
cell is said to contain the game's "saddle point" and the game is 
"strictly determined." 

Each player's best strategy is to play a strategy that includes 
the saddle point. A maximizes his gain by always showing two 
fingers; B minimizes his loss by always showing one. If both 
play their best, the payoff each time will be $3 to A. This is 
called the "value" of the game. As long as either player uses 
his optimal strategy he is sure to receive a payoff equal to or 
better than the game's value. If he plays a nonoptimal strategy, 
there is always an opposing strategy that will give him a poorer 
payoff than the value. In  this case the game is of course so triv- 
ial that both optimal strategies are intuitively obvious. 

Not all games are strictly determined. If we turn the finger 
game into "odds and evens" (equivalent to the game of match- 
ing pennies), the payoff matrix becomes the one shown in Fig- 
ure 4, middle. When fingers match, A wins $1; when they do 



not match, B wins $1. Since A's maxmin is -1 and B's minmax 
is 1, it is clear there is no saddle point. Consequently neither 
player finds one strategy better than the other. I t  would be fool- 
ish, for example, for A to adopt the strategy of always showing 
two fingers because B could win every time by showing one 
finger. To play optimally each player must mix his two strate- 
gies in certain proportions. Ascertaining the optimal propor- 
tions can be difficult, but here the symmetry of this simple game 
makes it obvious that they are 1 : 1. 

This introduces an all-important aspect of game theory: to be 
effective the mixing must be done by a randomizing device. 
It is easy to see why nonrandom mixing is dangerous. Suppose 
A mixes by alternating one and two fingers. B catches on and 
plays to win every time. A can adopt a subtler mixing pattern 
but there is always the chance that B will discover it. If he tries 
to randomize in his head, ~nconscious biases creep in. When 
Claude E. Shannon, the founder of information theory, was at 
the Bell Telephone Laboratories, he and his colleague D. W. 
Hagelbarger each built a penny-matching computer that con- 
sistently won against human players when they made their 
own choices by pressing one of two buttons. The computer an- 
alyzed its opponent's plays, detected nonrandom patterns, and 
played accordingly. Because the two machines used different 
methods of analyzing plays, they were pitted against each other 
"to the accompaniment," Shannon disclosed, "of small side bets 
and loud cheering" (see "Science and the Citizens," Scientific 
American, July 1954). The only way someone playing against 
such a machine can keep his average payoff down to zero is to 
use a randomizer-for example, flipping a penny each time to 
decide which button to push. 

The game matrix shown in Figure 4, right, provides an amus- 
ing instance of a game with a far from obvious mixed strategy. 
Player A holds a double-faced playing card made by pasting 
a black ace back to back to a red eight. Player B has a similar 
double card: a red two pasted to a black seven. Each chooses a 
side of his card and simultaneously shows i t  to the other. A wins 
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if the colors match, B if they fail to match. I n  every case the 
payoff in dollars is equal to the value of the winner's card. 

The game looks fair (has a value of zero) because the sum of 
what A can win (8 + 1 = 9) is the same as the sum of what B 
can win (2 + 7 = 9). Actually the game is biased in favor of B, 
who can win an average of $1 every three games if he mixes his 
two strategies properly. Since 8 and 1, in one diagonal, are each 
larger than either of the other two payoffs, we know at once 
that there is no saddle point. (A 2-by-2 game has a saddle point 
if and only if the two numbers of either diagonal are not both 
higher than either of the other two numbers.) Each player, 
therefore, must mix his strategies. 

Without justifying the procedure, I shall describe one way to 
calculate the mixture for each player. Consider A's top-row 
strategy. Take the second number from the first: 1 - (-2) = 3. 
Do the same with the second row: -7 -8 = -15. Form a frac- 
tion (ignoring any minus signs) by putting the last number 
above the first: 15/3, which simplifies to 5/1. A's best strategy 
is to mix in the proportions 5 : 1, that is, to show his ace five 
times for every time he shows his seven. A die provides a con- 
venient randomizer. He can show his ace when he rolls 1, 2, 3, 
4, or 5, his seven when he rolls 6. The randomizer's advice 
must, of course, be concealed from his opponent, who otherwise 
would know how to respond. 

B's best strategy is similarly obtained by taking the bottom 
numbers from the top. The first column yields 8, the second 
-10. Ignoring minus signs and putting the second above the 
first gives 10/8, or 5/4. B's best strategy is to show his seven 
five times to every four times for the two. As a randomizer he 
can use a table of random numbers, playing the seven when the 
digit is 1, 2, 3,4, or 5 and the deuce when it is 6, 7, 8, or 9. 

To calculate the game's value (the average payoff to A),  as- 
sume that the cells are numbered left to right, top to bottom, 
a, b, c, d .  The value is 

ad - bc . 
a + d - b - c  



The formula in this case has a value of -1/3. As long as A 
plays his best strategy, the 5 : 1 mixture, he holds his average 
loss per game to a third of a dollar. As long as B plays his best 
mixture, the 5 : 4, he ensures an average win per game of a 
third of a dollar. The fact that every matrix game, regardless 
of size or whether it has a saddle point, has a value, and that 
the value can be achieved by at least one optimal strategy for 
each player, is the famous minimax theorem first proved by 
von Neumann. Readers may enjoy experimenting with 2-by-2 
card games of this type but using different cards, and calculat- 
ing each game's value and optimal strategies. 

Most two-person board games, such as chess and checkers, 
are played in a sequence of alternating moves that continues 
until either one player wins or the game is drawn. Since the 
number of possible sequences is vast and the number of possible 
strategies is astronomically vaster, the matrix is much too enor- 
mous to draw. Even as simple a game as ticktacktoe would re- 
quire a matrix with tens of thousands of cells, each labeled 1, 
-1, or 0. If the game is finite (each player has a finite number 
of moves and a finite number of choices at each move) and has 
"perfect information" (both players know the complete state of 
the game at every stage before the current move), it can be 
proved (von Neumann was the first to do it) that the game is 
strictly determined. This means that there is at least one best 
pure strategy that always wins for the first or for the second 
player, or that both of the players have pure strategies that can 
ensure a draw. 

THE G A M E  OF GUESS I T  

ALMOST ALL card games are of the sequential-move type but 
with incomplete information. Indeed, the purpose of making 
the backs of cards identical is to conceal information. In such 
games the optimal strategies are mixed. This means that a 
player's best decision on most or all of his moves can be given 
only probabilistically and that the value of the game is an aver- 
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age of what the maximizing player will win in the long run. 
Poker, for instance, has a best mixed strategy, although (as in 
chess and checkers) it is so complicated that only simplified 
forms of it have been solved. 

Isaacs' card game, named Guess It  by his daughter Ellen, is 
remarkable in that it is a two-person sequential-move game of 
incomplete information, sufficiently complicated by bluffing to 
make for stimulating play, yet simple enough to allow com- 
plete analysis. 

The game uses eleven playing cards with values from ace to 
jack, the jack counting as 11. The packet is shuffled. A card is 
drawn at random and placed face down in the center of the 
table, neither player being aware of its value. The remaining 
ten cards are dealt, five to each player. The object of the game 
is to guess the hidden card. This is done by asking questions of 
the form "Do you have such-and-such a card?" The other 
player must answer truthfully. No card may be asked about 
twice. 

At any time, instead of an "ask" a player may end the game 
by a "call." This consists of naming the hidden card. The card 
is then turned over. If it was correctly named, the caller wins; 
otherwise he loses. To play well, therefore, a player must try to 
get as much information as he can, at the same time revealing 
as little as possible, until he thinks he knows enough to call. The 
delightful feature of the game is that each player must resort 
to occasional bluffing, that is, asking about a card he himself 
holds. If he never bluffed, then whenever he asked about a card 
not in his opponent's hand, the opponent would immediately 
know that card must be the hidden o n e a n d  would call and 
win. Bluffing is therefore an essential part of strategy, both for 
defense and for tricking the opponent into a false call. 

If player A asks about a card, say the jack, and the answer is 
yes, both players will then know B has that card. Since it will 
not be asked about again, nor will it be called, the jack plays no 
further role in the game. B places it face up on the table. 

If B does not have the jack, he answers no. This places him 



in a quandary, although one that proves to be short-lived. If he 
thinks A is not bluffing, he calls the jack and ends the game, 
winning if his suspicion is correct. If he does not call it and the 
hidden card is the jack, then A (who originally asked about it) 
will surely call the jack on his next play, for he will know with 
certainty that it is the hidden card. Therefore, if A does not call 
the jack on his next play, it means he had previously bluffed 
and has the jack in his hand. Again, because the location of the 
card then becomes known to both players, it plays no further 
role. It is removed and placed face up on the table. In  this 
way hands tend to grow smaller as the game progresses. After 
eacheelimination of a card the players are in effect starting a 
new game with fewer cards in hand. 

I t  is impossible to give here the details of how Isaacs solved 
the game. The interested reader will find it explained in his ar- 
ticle "A Card Game with Bluffing" in The  American Mathe- 
matical Monthly (Vol. 62, February 1955, pages 99-108). I 
will do no more here than explain the optimal strategies and 
how they can be played with the aid of two spinners made with 
the dials shown in Figure 5. Readers are urged first to play the 
game without these randomizers, keeping a record of n games 
between players A and B. They should then play another n 
games with only A using the spinners, followed by a third set 
of n games with only B using the spinners. (If both players use 
randomizers, the game degenerates into a mere contest of 
chance.) In this way an empirical test can be made of the 
efficacy of the strategy. 

The dials can be copied or mounted on a rectangle of stiff 
cardboard. Stick a pin in the center of each and over each pin 
put the loop end of a bobby pin. A flip of the finger sends the 
bobby pin spinning. The spinners must of course be kept out 
of your opponent's view when being used, either by turning 
your back when you spin them or keeping them on your lap be- 
low the edge of the table. After using them you must keep a 
"poker face" to avoid giving clues to what the randomizers tell 
you to do. 

The top dial tells you when to bluff. The boldface numbers 





give the number of cards in your hand. The other numbers 
scattered over the dial and attached to marks stand for the num- 
ber of cards in your opponent's hand. Assume that you have 
three cards and he has two. Confine your attention to the ring 
labeled with a boldface 3. Spin the bobby pin. If it stops in the 
portion of the ring that extends clockwise from mark 2 to the 
heavy horizontal line, you bluff. Otherwise you ask about a card 
that could be in your opponent's hand. 

In  either case, asking or bluffing, pick a card at random from 
the possibilities open to you. If a strict empirical test of strategy 
is to be made, you should use a randomizer for this selection. 
The simplest device would be a third spinner on a circle divided 
into I I equal sectors and numbered I to I I. If the first spinner 
tells you to bluff, for example, and you have two, four, seven, 
and eight in your hand, you spin the third spinner repeatedly 
until it stops on one of those numbers. Without the aid of such 
a spinner, simply select at random one of the four cards in your 
hand. The danger of your opponent's profiting from an uncon- 
scious mental bias is so slight, however, that we shall assume a 
third spinner is not used. 

The bottom dial is used whenever you have just answered no 
to an ask. On this dial the rings are labeled with italic numbers 
to indicate that they correspond to the number of cards in your 
opponent's hand. The boldface numbers near the marks give 
the number of cards you hold. As before, pick the appropriate 
ring and spin the bobby pin. If it stops in the portion of the ring 
that extends from the proper mark clockwise to the horizontal 
line, call the card previously asked. If it does not stop in this 
portion of the ring, your next action depends on whether your 
opponent has just one card or more than one. If he has only one, 
call the other unknown card. If he has more than one (and you 
have at least one card), you must ask. To decide whether to 
bluff or not, spin the first dial, but now you must pick your ring 
on the assumption that his hand is reduced by one card. The 
reason for this is that if he did not bluff on his last ask, your 
"no" answer will enable him to win on his next move. You 
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therefore play as if he were bluffing and the game were to con- 
tinue, in which case the card he asked about has been taken out 
of the game by your "no" answer even though it is not actually 
placed face up on the table until after his next move. 

In addition to the circumstances just explained, you call only 
under the following circumstances: (1) When you know the 
hidden card.  his-occurs when you have asked without bluf- 
fing and received a "no" reply, and he has not won the game 
by calling on his next turn; and it occurs of course when he 
holds no cards.) ( 2 )  When you have no cards and he has one 
or more, because if you do not call, he surely will call and win 
on his next play. If each of you holds just one card, it is imma- 
terial whether you call or ask; the probability of winning is 1/2 
and is obtained either way. (3) When instructed to call by the 
second dial, as explained before. 

The table in Figure 6 shows the probability of winning for 
the player who has the move. The number of his cards appears 
at the top, those of the other player on the left. At the begin- 

- .  

ning, assuming that both players use randomizers for playing 
their best, the first player's probability of winning is .538, or 

NUMBER OF CARDS IN PLAYER'S HAND 

1 2 3 4 5 

FIGURE 6 

Chart of probabilities of winning Guess It game 



slightly better than 1/2. If the payoff to the first player is $1 
for each win and zero for each loss, then $.538 is the value of 
the game. If after each game the loser pays the winner $1, the 
first player will win an average of 538 games out of every 
1,000. Since he receives $538 and loses $462, his profit is $76, 
and his average win per game is $76/1,000, or $.076. With 
these payoffs the game's value is a bit less than eight cents per 
game. If the second player does not use randomizers, the first 
player's chance of winning increases substantially, as should 
appear in an empirical test of the game. 

FOXHOLES 

HERE IS a simple, idealized war game that Isaacs uses to explain 
mixed strategies to military personnel. One player, the soldier, 
has a choice of hiding in any one of the five foxholes shown in 
Figure 7. The other player, the gunner, has a choice of firing 
at one of the four spots A, B,  C, D. A shot will kill the soldier if 
he is in either adjacent foxholeshot B, for example, is fatal if 
he is in foxhole 2 or 3. 

"We can see the need for mixing strategies," Isaacs writes, 
"for the soldier might reason: 'The end holes are vulnerable to 
only one. shot, whereas the central holes can each be hit two 
ways. Therefore I'll hide in one of the end holes.' Unfortunately 
the gunner might foresee this reasoning and fire only at A or 
D. If the soldier suspects that the gunner will do this, he will 
hide in a central hole. But now the gunner may still be one-up 
by guessing that the soldier will think he will think this way, 
therefore he aims at the center. These attempts at outthinking 
the opponent lead only to chaos. The only way either player 
can be sure of deceiving his opponent is by mixing his 
strategies." 

Assume that the payoff is I if the gunner kills the soldier, 0 
if he does not. The value of the game is then the same as the 
probability of a hit. What are the optimal strategies for each 
player and what is the game's value? 



The foxhole game 



A N S W E R S  

RUFUS ISAACS' foxhole game concerns a soldier who has a choice 
of hiding in one of five foxholes in a row and a gunner who has 
a choice of firing at one of four spots, A, By C, D, between ad- 
jacent foxholes. An equivalent card game can be played with 
five cards, only one of which is an ace. One player puts the 
cards face down in a row. The other player picks two adjacent 
cards and wins if one of them is the ace. 

"One can easily write a 4-by-5 matrix for this game and 
apply one of the general procedures described in the textbooks," 
Isaacs writes. "But, with a little experience, one learns in simple 
cases like this how to surmise the solution and then verify it." 

The soldier's optimal mixed strategy is to hide only in holes 
1, 3, and 5, selecting the hole with a probability of 1/3 for each. 
The gunner has a choice of any of an infinite number of op- 
timal strategies. He assigns probabilities of 1/3 to A, 1/3 to D, 
and any pair of probabilities to B and C that add to 1/3. (For 
example, he could let B and C each have a probability of 1/6, 
or he could give one a probability of 1/3 and the other a prob- 
ability of 0.) 

To see that these strategies are optimal, consider first the sol- 
dier's probability of survival. If the gunner aims at A, the sol- 
dier has a 2/3 chance of escaping death. The same is true if the 
gunner aims at D. If he aims at By he hits only if the soldier is 
in hole 3, so that again the probability of missing is 2/3. The 
same is true if he aims at C. Since each individual choice gives 
the soldier a 2/3 probability of survival, the probability remains 
2/3 for any mixture of the gunner's choices. Thus the soldier's 
strategy ensures him a survival probability of at least 2/3. 

Consider now the gunner's strategy. If the soldier is in hole 1, 
he has a hit probability of 1/3. If the soldier is in hole 2, he is 
hit only if the gunner fires at A or By and consequently the 
probability of a hit is 1/3 plus whatever probability the gunner 
assigned to B. If the soldier is in hole 3, he is hit only if the 
gunner fires at B or C, to which are assigned probabilities adding 
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to 1/3. Therefore the probability of a hit here is 1/3. If the sol- 
dier is in hole 4, the probability of a hit is 1/3 plus the probabil- 
ity assigned to C. If he is in hole 5, the probability is 1/3. Thus 
the gunner's strategy guarantees him a probability of at 
least 1/3. 

Assuming a payoff of 1 to the gunner if he kills the soldier, 0 
if he doesn't, the value of the game is 1/3. The gunner has an 
infinite number of strategies that guarantee him a hit probabil- 
ity of at least 1/3. I t  is possible he could do better against a 
stupid opponent, but against good opposition he can hope for no 
more because, as we have seen, the soldier has a strategy that 
keeps the probability of his death down to 1/3. A similar argu- 
ment holds from the soldier's standpoint. By using his optimal 
strategy he keeps the ~ayoff  at 1/3 and cannot hope to do better 
because the gunner has a way of making it at least 1/3. As a 
further exercise, readers can try to prove there are no optimal 
strategies other than those explained here. 

"The process of surmising the solution is not as hard as it 
looks," Isaacs adds. "The reader can so convince himself by 
generalizing this solution to the same game but with n foxholes. 
For odd n the preceding solution carries over in an almost ob- 
vious way, but with even n one encounters some modest 
novelty." 



C H A P T E R  4 

Factorial Oddities 

MATHEMATICAL FORMULAS, particularly combinatorial formu- 
las, are sometimes sprinkled with exclamation marks. These are 
not expressions of surprise. They are operational symbols called 
factorial signs. A factorial sign follows a whole number or an 
expression for such a number, and all it means is that the num- 
ber is to be multiplied by all smaller whole numbers. For exam- 
ple, 4!, read as "factorial four," is the product of 4 x 3 x 2 x 1. 
(In older books factorial n is symbolized b.) 

Why are factorials so important in combinatorial mathe- 
matics and in probability theory, which relies so heavily on 
combinatorial formulas? The answer is simple: Factorial n is 
the number of different ways that n things can be arranged in 
a line. Visualize four chairs in a row. In how many different 
ways can four people seat themselves? There are four ways to 
fill the first chair. In each of those ways there are three ways 
the second chair can be occupied, and so there are 4 x 3, or 12, 
ways to fill the first two chairs. For each of those ways there are 
two ways to occupy the third chair, and so there are 4 x 3 x 2, 
or 24, ways to fill the first three chairs. In  each of those 24 in- 
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stances there is only one person left to take the fourth chair. 
The total number of distinct ways of occupying the four chairs 
is therefore 4!, or 4 x 3 x 2 x 1 = 24. 

The same reasoning shows that 52 playing cards can be made 
into a deck in 52! different ways, a number of 68 digits that be- 
gins 806581 . . . 

What is the probability that a bridge player will be dealt 13 
spades? We first determine the number of different bridge 
hands. Since the order in which the cards are dealt is irrelevant, 
we want to know not the permutations but the number of dif- 
ferent combinations of 13 cards that can be made with the 52 
cards of the deck. The formula for a combination of n elements, 
taken r at a time, is n!/r!(n - r)!. With n equaling 52 and r 
equaling 13, we have 52!/(13! x 39!), which works out to 
635,013,559,600. A bridge player can therefore expect to be 
dealt all spades once in every 635,013,559,600 deals. His chance 
of getting 13 cards of the same suit, not necessarily spades, is 
four times this, or once in every 158,753,389,900 hands. The 
chance that such a hand will be dealt to one of the four players 
is 1 over a number a trifle less than one-fourth of the previous 
number. (It is not exactly one-fourth because we have to con- 
sider the possibility that two or more players may each have a 
one-suit hand.) It works out to what is still such a stupendously 
low probability, 1/39,688,347,497, that one is led to conclude 
that reports of such hands, which turn up in some newspaper 
around the world about once a year, are almost certainly false 
reports, hoaxes, or the result of a dealer accidentally giving a 
new deck two perfect riffle shuffles. (A cut would not disturb 
the cyclic ordering.) It is a curious fact ( as Norman T. Gridge- 
man, a Canadian statistician, has pointed out) that although 
there are frequent reports of four perfect hands, there are no 
reports of two perfect hands, which is millions of times more 
probable. 

It is easy to see from these elementary examples that it is 
much simpler to express large factorials by using the factorial 
sign than to write out the entire number. Indeed, factorials in- 



crease in size at such a rapid rate [see Figure 81 that until the 
advent of high-speed computers exact values for factorials were 
known only up to about 300!, except for a dozen or so higher 
factorials which someone bothered to compute. 

FIGURE 8 

Factorials from 0 to 20 

Note on the chart that 7! = 5,040, a very interesting number. 
In Book 5 of his Laws, Plato gives this as the population of an 
ideal city. His argument is that 5,040 has an unusually large 
number of factors (59, including 1 but not 5,040), which makes 
for efficient division of the populace for purposes of taxes, land 
distribution, war, and so on. (Plato was probably not aware that 
7,560 and 9,240 each have 63 proper divisors, the maximum 
possible for a number of four or fewer digits. For this and more 
on Plato's number, see my book The Magic Numbers of Doctor 
Matrix [Prometheus, 19851, Chapter 14.) 
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Higher factorials can be approximated by Stirling's formula, 
named after James Stirling, an eighteenth-century Scottish 
mathematician: 

It is a strange formula, involving the two best-known transcen- 
dental numbers, pi and e. The formula's "absolute error" (the 
difference between a factorial's true value and its approxima- 
tion) increases as factorials get larger, but the "percentage of 
error"(abso1ute error divided by the true value) steadily 
decreases. 

For practical purposes the formula gives excellent approxi- 
mations of high factorials, but mathematicians have a compul- 
sion to know things precisely. Just as mountain climbers will 
scale a peak or space explorers go to the moon "because it is 
there," so mathematicians with access to computers have irre- 
pressible urges to explore the "outer space" of enormous num- 
bers. (Precisely in what sense we can say a large factorial, 
never before computed, "is there" is a question that mathema- 
ticians answer differently, depending on their philosophy of 
mathematics.) It was the computer that made it possible, by 
monitoring and interpreting signals, to take close-up looks at 
the surface of the moon and Mars. Those same computers have 
also made it possible to take close-up looks at large factorials, 
gigantic numbers that have been known for centuries only in a 
vague, out-of-focus way. 

The remarks in the previous paragraph are taken from a 
communication received from Robert E. Smith, director of com- 
puter applications at the Control Data Institute in Minneapolis. 
He writes that he was exploring the outer fringes of factorials 
when it occurred to him that it would be pleasant to print on 
his Christmas card, in the form of a Christmas tree, one of his 
mammoth factorial numbers. It would be necessary, of course, 
to have the computer print one digit for the top of the tree, then 
a row of three digits, then a row of five, and so on. Are there 



factorials with the proper number of digits so that such a print- 
out would form a perfect tree? Yes, there is an infinity of them. 
The table [see Figure 81 shows, for example, that 12! has nine 
digits. It can be printed in tree form like this: 

A tree factorial obviously must have a number of digits that 
is a partial sum of the infinite series 1 + 3 + 5 + 7 + . . . A 
glance at the square array of spots below shows that all such 
sums are perfect squares: 

Smith's task, therefore, was to program a computer to search 
for large factorials that have a square number of digits but in- 
stead of printing them in square formation to print them in 
lines of 1, 3, 5, 7 . . . digits to form a tree. This was done. The 
computer tested all factorials up to approximately 1,000! (and 
a few larger ones) and found exactly 20 factorials less than 
1,000! that contained a square number of digits [see Figure 91. 

In  the printout of 105! from Smith's computer, note the bot- 
tom row of zeros [see Figure 101. If the reader will study the 
series 1 x 2 x 3 x 4 x . . . , he will see that every multiplica- 
tion by a number ending in 5 will add one or more zeros to the 
running product, and that every multiplier ending in one or 
more zeros will add additional zeros. Because these terminal 
zeros cannot be lost by later multiplications they are cumula- 
tive, piling up steadily at the ends of factorials as they get 
larger. Factorial 105 has a "tail" of 25 zeros. Stirling's formula, 
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FIGURE 9 
Tree factorials less than 1,000! 

Factorials 

7 

12 

18 

32 

59 

8 1 

105 

132 

228 

265 

284 

304 

367 

389 

435 

483 

508 

697 

726 

944 

FIGURE 10 

Tree printout of the 169 digits of 105! 

Number of Digits 

4 

9 

16 

36 

81 

121 

169 

225 

441 

529 

576 

625 

784 

841 

961 

1,089 

1,156 

1,681 

1,764 

2,401 



applied to 105!, gives an approximation that is roughly equal to 
1,081, followed by 165 zeros. When this blurry result is com- 
pared with the exact result shown in the illustration, one sees 
that, in Smith's words, "using Stirling's formula for arriving 
at large factorials is analogous to a blind man trying to visual- 
ize an elephant by grasping a couple of inches of its trunk in 
one hand and the tip of its tail in the other. 

"It may surprise the reader to know," Smith continues, "that 
computers cannot calculate results this large in one piece. That 
is, the capacities of individual computer cells are soon exceeded, 
so normal computer arithmetic cannot be used." The trick, he 
explains, is to use several internal "bins," each of which is al- 
lowed to hold t digits of a result. "After each multiplication is 
performed, excess digits beyond the t digits, in each bin, are re- 
moved and added to the bin on their immediate left. Then the 
digits in all the bins, which form the factorial result, are 
printed." A fuller explanation of this program will be found in 
Smith's book T h e  Bases of FORTRAN, published in 1967 by the 
Control Data Institute. Another large tree factorial computed 
by this method is shown in Figure 11. 

When the number of digits in a factorial is equal to two con- 
secutive squares, such as 35!, which has 42 + 52 = 41 digits, it 
can be printed as a diamond. One simply turns the smaller tree 
of G2 digits upside down and fits it against the base of the 52 tree 
like this: 
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I have blanked out the center digit to give the reader a small 
problem. What is the missing digit? By applying a simple trick 
known to most accountants, and which every reader of this 
book ought to know, the missing digit can be found quickly 
without a single multiplication. 

5 
119 

90692 
7755079 
P66003615 
25819185379 

798436067729R 
470133958906714 
460111746339k439R 
5839132233165777956 
548496166254935516795 
145650795325RRh77hOR0~2 

6423489045662147453176349 
8257Y0036437158643266482nO2 
8811350569491h924243929121639 

7995173324hR02053RB14982953672n 
6Y754658933RlO5120020005674705145 

2864140997897R9566316646044S?253922 
? 1 8 2 1 3 9 3 ? 2 0 Y 1 2 ~ 0 ~ R 9 7 1 1 7 1 ~ 2 1 7 ~ n 0 9 3 4 5 ~ 8  

65954648792945921473500720076Y105667735 
5 4 n 7 4 2 8 9 5 4 ~ 6 5 5 6 5 9 9 7 7 2 2 6 Z O O 5 4 0 1 6 0 3 3 5 n 5 8 1 ~ ~  

83653R4235510714071491n98R3581~73b58892?7~5 
5 1 1 4 5 6 4 6 1 4 2 1 ~ 5 4 7 7 3 R O 4 9 0 7 H 5 3 0 7 3 3 8 4 4 8 4 c ) 8 ~ 7 ~ 4 U ~ 0  

7503096287591?SoY5219YQ525?92594359RROR464239~2 
3 9 3 1 2 0 4 1 1 1 8 1 8 2 ~ 0 9 7 9 2 1 3 5 * 4 7 7 7 & 4 4 7 5 1 5 3 8 4 3 5 2 0 ~ 7 7 4 ~ 0 3  

0 ~ 8 4 7 7 1 1 6 0 3 2 2 2 3 6 ~ 1 1 6 4 4 3 Y 4 1 9 2 2 ~ 0 0 2 0 7 3 S 6 7 3 2 ~ 1 ~ 0 ~ ~ 1 ~ ~ 8  
35354728R9760490526928901530779761898P464654~42~34912 

7 8 8 2 7 3 3 4 7 Q B 2 5 6 1 6 9 5 ~ 5 3 1 2 1 6 1 0 7 n 5 ~ ~ 7 1 4 0 1 2 5 9 4 5 9 ~ 7 5 2 4 ~ 5 0 ~ 1 6 9  
4 4 0 0 1 ~ 3 2 7 3 9 5 3 1 6 8 8 7 n 0 0 ~ 3 3 9 1 1 7 6 4 4 ~ 4 9 8 7 6 1 9 0 7 5 0 ~ ~ ~ ~ 3 7 ~ 7 7 ~ ~  
47371~4S15791804625~269695~h61hR1143403546lR~57~~~k82~31~~ 

254562561370504~834238544557702694536)R52921453~6~~033607142~ 
2 8 Y l 6 o 1 1 1 7 t 0 8 4 9 0 1 8 9 0 3 3 4 9 0 4 7 5 2 9 1 2 8 4 ~ ~ 8 R 6 4 6 ? 7 6 4 ~ 6 7 8 7 7 8 6 ~ 5 6 8 4 9 ~ 0 9 0  

4 ~ ~ ~ ~ 4 ~ u n o o o o o n o o o o o o o o o o o 0 n o o ~ o o o o 0 ~ o ~ 0 ~ o o o o o o o o o n o o o o o o o ~ o n o o n n  
o o o o o o o o o o o o o o u o o o o o o o o o o o o o o n o o o o o o o o o n o o o u o u o o o o o o o o o o o o o o o o o o o o o  

FlOURE 11 
Tree printout of the 1,156 digits of 508! 

There are many other basic geometric shapes in which cer- 
tain factorials can be printed. Smith's computer printed 477! as 



a hexagon with 17 digits on each side [see Figure 121. Finally, 
to stagger the reader with one of Smith's computer's supermon- 
strosities, there is 2,206! in octagonal form [see Figure 131. If 
someone had predicted fifty years ago that before the century 
ended this factorial would be written out in full, digit by digit, 
most mathematicians would have laughed at so preposterous a 
prophecy. 

FIGURE 12 
Hexagon printout of 477! (1,073 digits) 



YOU ARE LOOKINQ b f  FACTORIAL 2 2 0 6  IMERE &RE 6 4 2 1  0 t Q t T S  I N  T H I S  ArSwER 

.-..-. ... .................................. Octagon printout ooooooooooooooooooooooooooooooooooooooonooo 
0000000000U000000000000000000000000000000 

(6,421 digits!) o o o ~ o o o o ~ ~ o ~ o o ~ o o ~ ~ o o o o o ~ ~ o ~ ~ o ~ ~ ~ ~  
D000000U0000000000000000000000000 

0000000000000000000000n00000000 



Factorials, as one would expect, are closely related to primes. 
The most famous of the many elegant formulas that link the 
two kinds of number is known as Wilson's theorem, after an 
eighteenth-century English judge, Sir John Wilson, who hit on 
the formula when he was a student at Cambridge. (It later de- 
veloped that Leibniz knew the formula.) Wilson's theorem says 
that (n - I ) !  + 1 is divisible by n if, and only if, n is a prime. 
For example, if n equals 13, then (n - 1 ) ! + 1 becomes 12! + 
1 = 479,001,601. I t  is easy to see that 12! is not a multiple of 
13, because 13 is prime and the factors of 12! do not include 13 
or any of its multiples. But, astonishingly, the mere addition of 
1 creates a number that is divisible by 13. Wilson's theorem is 
one of the most beautiful and important theorems in the history 
of number theory, even though it is not an efficient way to test 
primality. 

There are many simply expressed but difficult problems 
about factorials that have never been solved. No one knows, for 
example, if a finite or an infinite number of factorials become 
primes by the addition of 1, or even how many become squares 
by the addition of 1. (We are concerned now with the number 
itself, not its number of digits.) I t  was conjectured back in 1876 
by H. Brocard, a French mathematician, that only three fac- 
torialsA!, 5 ! ,  and 7!-become squares when they are in- 
creased by 1. Albert H. Beiler, in Recreations in the Theory of 
Numbers, says that this has been investigated by computers up 
to factorial 1,020 without finding any other solution, but Bro- 
card's conjecture remains unproved. 

I t  is easy to find factorials that are the products of factorials 
but hard to find them if the factorials to be multiplied are in 
arithmetic progression and still harder to find them if they are 
consecutive. Only four consecutive instances are known: O! X I! 
= l!, O! x 1! x 2! = 2!, l !  x 2! = 2!, and 6! x 7! = lo!. 

I t  should be explained, in connection with the first two solu- 
tions, that O! is defined as 1 in spite of the fact that 1 is also the 
value of 1 !. Strictly speaking, O! is meaningless, but by making 
it 1 many important formulas are kept free of anomalies. The 
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basic identity n! = n ( n  - 1) !, which means that factorial n 
equals n times the factorial of the preceding integer, is true for 
all positive values of n only if O! = 1. Consider the formula 
given earlier, n!/r! ( n  - r )  !, to determine how many combina- 
tions there are of two things taken two at a time. The answer, 
of course, is 1. The formula gives that answer only if O! equals 
1. If O! equals 0, the formula becomes meaningless because it 
simplifies to a division by zero. The famous binomial theorem, 
discovered by Isaac Newton, is another classic instance of a 
basic formula that can be debugged, so to speak, by defining 
factorial 0 as 1. 

The quaint problem of finding whole numbers equal to the 
sum of the factorials of their digits has recently been solved. 
There are four solutions. Two are trivial: 1 = I!  and 2 = 2!. 
The largest example was found in 1964 by Leigh Janes of 
Houston, using a computer: 40,585 = 4! + O! + 5! + 8! + 5!. 
Can the reader find the remaining solution? It can be expressed 
as A! + B! + C! = ABC. Each letter is a different digit. 

Of many classic recreational problems for which factorials 
provide elegant solutions, I select one from graph theory. A 
man who lives at the top left corner of a rectangular grid of city 
blocks [see Figure 141 works in an office building at the bottom 

7 OFFICE 

FIGURE 14 

Route problem involving factorials 



right corner. It is clear that the shortest path along which he 
can walk to work is 10 blocks long. Bored with following the 
same route each day, he begins to vary it. How many different 
10-block routes are there connecting the two spots? And what is 
a compact formula for the number of different minimum routes 
joining the diagonally opposite corners of any rectangular area 
of blocks? (Here is a hint: The number of different arrange- 
ments, or permutations, of n objects of which a objects are iden- 
tical and the remaining b objects are also identical is n!/a!b!.) 

A D D E N D U M  

THE FORMULA given at the close of the chapter is a special case 
of an important general formula. The number of different ar- 
rangements of n objects, of which a are identical, b are identi- 
cal, c are identical, and so on, is 

The formula is easily explained. The number of permuta- 
tions of n objects, all different, is n!. If a objects are alike, it 
makes no difference how they are permuted, so we divide by a! 
to eliminate all the permutations that are identical because of 
the identities of the a objects. Similarly, we also divide by b! to 
eliminate all permutations that are identical because of the 
identities of the b objects, and so on for permutations of other 
identical objects. The letters of MISSISSIPPI, for example, can 
be permuted 11! ways if each letter is considered distinct. But 
if we treat the four I's as identical, as well as the four S's and 
two P's, the number of permutations is 11!/(4! x 4! X 2 ! )  = 
34,650. 

Many readers called my attention to an oddity involving 
factorials and the calculus of finite differences. Start with the 
sequence of consecutive numbers raised to the power of n, 
where n is any non-negative integer: 
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The nth row of differences is an endless repetition of n!. Note 
that this holds even when n = 0. 

Donald E. Boynton, James Cassels, and Rear Admiral Robert 
S. Hatcher each sent the following simple method of calculat- 
ing the number of zeros in the tail of any factorial. The method 
seems not to be well known. If a multiplier is divisible by 5 but 
not by 52 it adds one zero to the product. If divisible by 52 but 
not by 53 it adds two zeros, if divisible by 58 but not 54 it adds 
three zeros, and so on. Therefore, the number of terminal zeros 
of n! can be found by dividing n by 5, discarding the remainder, 
dividing the quotient by 5, discarding the remainder, and re- 
peating this process until the quotient is less than 5. The sum of 
all the quotients is the number of zeros. Example: 2,206!, as 
shown in Figure 13, has 549 zeros at the end. The successive 
quotients, after 2,206 has been repeatedly divided by 5 (remain- 
ders discarded), are 441, 88, 17, and 3. They sum to 549. 

The problem of determining the last nonzero digit of a large 
factorial calls for a more complicated algorithm. I leave this for 
the interested reader to work out. What, for instance, is the last 
nonzero digit of 1,000!? 

A N S W E R S  

THE MISSING CENTER DIGIT in the diamond-shaped factorial is 
easily found by recalling that every multiple of 9 has a digital 
root of 9; if one keeps summing the digits of the number, cast- 
ing out 9's as he goes along, the final digit must be 9. Every fac- 
torial higher than 5! is a multiple of 9 because 6! has 3 and 6 as 
factors and 3 times 6 is 18, a multiple of 9. Therefore to find a 
missing digit in any factorial greater than 5 !  one simply obtains 
the digital root of the mutilated factorial and subtracts it from 9 
to get the missing digit. If the mutilated factorial has a digital 
root of 9, the missing digit could be either 0 or 9, but in this case 



the digital root of the mutilated diamond factorial is 3, so there 
is no ambiguity. The missing center digit must be 6. 

Had there been ambiguity, the missing digit is easily found 
by using a familiar test for divisibility by 11. All factorials 
greater than l o !  are obviously exact multiples of 11. If a num- 
ber is a multiple of 11, the sum of its digits in even places either 
equals the sum of its digits in odd places, or the sums differ by 
a multiple of 11. This test leaves no ambiguity about any miss- 
ing digit in a factorial greater than l o ! .  

A !  + B !  + C! = ABC has the unique solution l !  + 4! + 5 !  = 

145. For a proof that 1 ,  2, 145, and 40,585 are the only positive 
integers, each equal to the sum of the factorials of its digits, see 
George D. Poole, "Integers and the Sum of the Factorials of 
Their Digits," iZlathenzatics Magazine, Lbl. 44, Norember 1971, 
pages 278-79. 

To find the number of different minimum-length routes from 
one corner of a rectangular section of city blocks to the diago- 
nally opposite corner, consider that if the rectangular section is 
a blocks long and b blocks wide, the miiiimum path that con- 
nects diagonally opposite corners is a plus b. Call this sum ?z. 
Every n-length path from corner to corner call nov7 be 
expressed as a chain of n symbols, of which a symbols will be 
identical (indicating a block's travel length~vise toward the goal) 
and the remaining b symbols  ill be identical (indicating a 
block's travel widthwise to the goal). If we let a penny stand for 
a movement of one block lengthwise and a dime for a more- 
ment of one block widthwise, then the number of different 
routes will equal the number of different ways that a pennies 
and b dimes call be arranged ill a row. Every distinct route can 
be put in one-to-one correspondence with a permutation of the 
n coins, and every permutation of the coins corresponds to one 
of the routes. 

The hint was the forinula n!/a!b! for the number of ways of 
arranging n objects in a row, of which u are identical and the 
remaining b are identical. The rectangle is six blocks long and 
four blocks wide, therefore the problem of determining the 
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number of different routes is isomorphic with the problem of 
finding the number of different ways six pennies and four 
dimes can be placed in a row. The answer is lo!/ (6! x 4!) = 210. 

The problem ties in with the discussion of Pascal's triangle in 
Chapter 15 of my Mathematical Carnival (Mathematical Asso- 
ciation of America, 1989), as the reader will discover if he labels 
each intersection with the number of different minimum-length 
routes from the upper left corner to that intersection. The an- 
swer, 210, is found on the triangle simply by starting at the top 
of the triangle, moving six (or four) steps down one side, then 
turning and going down four (or six) steps in the other diagonal 
direction. 



C H A P T E R  5 

The Cocktail Cherry 
and Other Problems 

1 .  T H E  C O C K T A I L  C H E R R Y  

THIS IS one of those rare, delightful puzzles that can be solved 
at once if you approach it right, but that is subtly designed to , 

misdirect your thoughts toward the wrong experimental pat- 
terns. Intelligent people have been known to struggle with it 

FIGURE 15 
T h e  puzzling Manhattan 
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for twenty minutes before finally deciding that there is no 
solution. 

Place four paper matches on top of the four matches that 
form the cocktail glass in Figure 15. The problem is to move 
two matches, and only two, to new positions so that the glass is 
re-formed in a different position and the cherry is outside the 
glass. The orientation of the glass may be altered but the empty 
glass must be congruent with the one illustrated. The drawing 
at A shows how two matches can be moved to turn the glass up- 
side down. This fails to solve the problem, however, because 
the cherry remains inside. The drawing at B shows a way to 
empty the glass, but this does not solve the puzzle either because 
three, rather than two, matches have been moved. 

2 .  THE PAPERED CUBE 

WHAT IS the largest cube that can be completely covered on all 
six sides by folding around it a pattern cut from a square sheet 
of paper with a side of three inches? (The pattern must, of 
course, be all in one piece.) 

3 .  L U N C H  AT THE TL CLUB 

EVERY MEMBER of the TL Club is either a truther, who always 
tells the truth when asked a question, or a liar, who always an- 
swers with a lie. When I visited the club for the first time, I 
found its members, all men, seated around a large circular 
table, having lunch. There was no way to distinguish truthers 
from liars by their appearance, and so I asked each man in turn 
which he was. This proved unenlightening. Each man naturally 
assured me he was a truther. I tried again, this time asking each 
man whether his neighbor on the left was a truther or a liar. To 
my surprise each told me the man on his left was a liar. 

Later in the day, back home and typing up my notes on the 
luncheon, I discovered I had forgotten to record the number of 
men at the table. I telephoned the club's president. He told me 
the number was 37. After hanging up I realized that I could 



not be sure of this figure because I did not know whether the 
president was a truther or a liar. I then telephoned the club's 
secretary. 

"No, no," the secretary said. "Our president, unfortunately, 
is an unmitigated liar. There were actually 40 men at the 
table." 

Which man, if either, should I believe? Suddenly I saw a 
simple way to resolve the matter. Can the reader, on the basis 
of the information given here, determine how many men were 
seated at the table? The problem is derived from a suggestion 
by Werner Joho, a physicist in Zurich. 

4 .  A  FAIR D I V I S I O N  

Two BROTHERS inherited a herd of sheep. They sold all of them, 
receiving for each sheep the same number of dollars as there 
were sheep in the herd. The money was given to them in $10 
bills except for an excess amount, less than $10, that was in sil- 
ver dollars. They divided the bills between them by placing 
them on a table and alternately taking a bill until there were 
none left. 

"It isn't fair," complained the younger brother. "You drew 
first and you also took the last bill, so you got $10 more than I 
did." 

To even things up partially the older brother gave the 
younger one all the silver dollars, but the younger brother 
was still not satisfied. "You gave me less than $10," he argued. 
"You still owe me some money." 

"True," said the older brother. "Suppose I write you a check 
that will make the total amounts we each end up with exactly 
the same." 

This he did. What was the value of the check? The informa- 
tion seems inadequate, but nevertheless the question can be 
answered. 

Ronald A. Wohl, a chemist at Rutgers University, called my 
attention recently to this beautiful problem, which he had found 
in a French book. Later I discovered in my files a letter from 



The Cocktail Cherry and Other Problems 69 

Carl J. Coe, a retired mathematician at the University of Michi- 
gan, discussing essentially the same problem, which he said had 
been making the rounds among his colleagues in the 1950's. I 
suspect it is still not widely known. 

5 .  T R I - H E X  

TICKTACTOE is played on a pattern that can be regarded as nine 
cells arranged in eight rows of three cells to a row. It is possible, 
however, to arrange nine cells in nine or even ten rows of three. 
Thomas H. O'Beirne of Glasgow, author of Puzzles and Para- 
doxes (Oxford, 1965), experimented with topologically distinct 
patterns of nine rows to see if any were suitable for ticktacktoe 
play. He found trivial wins for the first player on all regular 
configurations except the one shown in Figure 16. 

FIGURE 16 
The game of Tri-Hex 

To play Tri-Hex, as O'Beirne calls this game, one player can 
use four pennies and the other four dimes. No fifth move is al- 
lowed the first player. Players take turns placing a coin on a 
spot, and the first to get three of his coins in a row wins. If both 
players make their best moves, is the game a win for the first 
player or the second, or is it a draw as in ticktacktoe? 

The role played by such configurations as this in modern ge- 
ometry is entertainingly discussed by Harold L. Dorwart in 
The Geometry of Incidence (Prentice-Hall, 1966) and in the 
instruction booklet for his puzzle kit, Configurations, now avail- 
able from the makers of the logic game WFF'N PROOF. In addi- 
tion to its topological and combinatorial properties, the pattern 



shown here has an unusual metric structure: every line of three 
is divided by its middle spot into segments with lengths in the 
golden ratio. 

6 .  LANGFORD'S  PROBLEM 

MANY YEARS AGO C. Dudley Langford, a Scottish mathemati- 
cian, was watching his little boy play with colored blocks. 
There were two blocks of each color, and the child had piled 
six of them in a column in such a way that one block was be- 
tween the red pair, two blocks were between the blue pair, and 
three were between the yellow pair. Substitute digits 1, 2, 3 for 
the colors and the sequence can be represented as 312132. 

This is the unique answer (not counting its reversal as being 
different) to the problem of arranging the six digits so that 
there is one digit between the 1's and there are two digits be- 
tween the e's and three digits between the 3's. 

Langford tried the same task with four pairs of differently 
colored blocks and found that it too had a unique solution. Can 
the reader discover it? A convenient way to work on this easy 
problem is with eight playing cards: two aces, two deuces, two 
threes, and two fours. The object then is to place them in a row 
so that one card separates the aces, two cards separate the deuces, 
and so on. 

There are no solutions to "Langford's problem," as it is now 
called, with five or six pairs of cards. There are 26 distinct solu- 
tions with seven pairs. No one knows how to determine the 
number of distinct solutions for a given number of pairs ex- 
cept by exhaustive trial-and-error methods, but perhaps the 
reader can discover a simple method of determining if there is a 
solution. 

7.  OVERLAP SQUARES 

IN 1950, when Charles W. Trigg, dean emeritus of Los Angeles 
City College, was editing the problems department of Mathe- 
matics Magazine, he introduced a popular section headed 
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What 

"Quickies." A quickie, Trigg then explained, is a problem 
"which may be solved by laborious methods, but which with 
proper insight may be disposed of with dispatch." His 1967 
book, Mathematical Quickies (reprinted by Dover in 1985), is a 
splendid collection of 270 of the best quickies he encountered or 
invented in his distinguished career as a problem expert. 

I n  one quickie from Trigg's book [see Figure 171 the smaller 
square has a side of three inches and the larger square a side of 
four. Corner D is at the center of the small square. The large 
square is rotated around D until the intersection of two sides a t  
point B exactly trisects AC. How quickly can you compute the 
area of overlap (shown shaded) of the two squares? 

8.  F A M I L I E S  I N  FERTlL lA  

People who have three daughters try once more 
And then it's fifty-fifty thy' l l  have four. 
Those with a son or sons will let things be. 
Hence all these surplus women. Q.E.D. 

This "Note for the Scientist," by Justin Richardson, is from a 
Penguin collection called Yet More Comic & Curious Verse, se- 



lected by J. M. Cohen. Is the expressed thought sound? 
No, although it is a commonly encountered type of statistical 

fallacy. George Gamow and Marvin Stern, in their book Puzzle- 
Math (Viking, 1958), tell of a sultan who tried to increase the 
number of women available for harems in his country by pass- 
ing a law forbidding every mother to have another child after 
she gave birth to her first son; as long as her children were girls 
she would be permitted to continue childbearing. "Under this 
new law," the sultan explained, "you will see women having 
families such as four girls and one boy; ten girls and one boy; 
perhaps a solitary boy, and so on. This should obviously in- 
crease the ratio of women to men." 

As Gamow and Stern make clear, it does nothing of the sort. 
Consider all the mothers who have had only one child. Half of 
their children will be boys, half girls. Mothers of the girls will 
then have a second child. Again there will be an even distribu- 
tion of boys and girls. Half of those mothers will go on to have 
a third child and again there will be as many boys as there are 
girls. Regardless of the number of rounds and the size of the 
families, the sex ratio obviously will always be one to one. 

Which brings us to a statistical problem posed by Richard G. 
Gould of Washington. Assume that the sultan's law is in effect 
and that parents in Fertilia are sufficiently potent and long- 
lived so that every family continues to have children until there 
is a son, and then stops. At each birth the probability of a boy is 
one-half. In the long run, what is the average size of a family in 
Fertilia? 

9 .  CHRISTMAS A N D  HALLOWEEN 

PROVE (asks Solomon W. Golomb) that Oct. 31 = Dec. 25. 

10. K N O T  THE ROPE 

OBTAIN a piece of clothesline rope about five and a half feet 
long. Knot both ends to form a loop as shown in Figure 18. Each 
loop should be just large enough to allow you to squeeze a hand 
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through it. With the loops around each wrist and the rope 
stretched between them, is it possible to tie a single overhand 
knot in the center of the rope? You may manipulate the rope 
any way you like, but of course you must not slide a loop off 
your wrist, cut the rope, or tamper with either of the existing 
knots. The trick is not well known except to magicians. 

FIGURE 18 
Rope for the knot problem 

A N S W E R S  

I. FIGURE 19 shows how two matches are moved to re-form the 
cocktail glass with the cherry outside. 



2. If overlapping of paper is not allowed, the largest cube 
that can be folded from a pattern cut from a square sheet of pa- 
per with a three-inch side is a cube with a side that is three- 
fourths of the square root of 2. The pattern, shown in Figure 20, 
is folded along dotted lines. 

In  stating the problem, however, I did not forbid overlapping. 
This was not an oversight. I t  simply did not occur to me that 
overlapping would permit better solutions than the one above, 
which was given as the problem's only answer. John H. Halton, 
a mathematician at the University of Wisconsin, was the first 
to send a cut-and-fold technique by which one can approach as 
closely as one wishes to the ultimate-size cube with a surface 
area equal to the area of the square sheet! (Three readers, Da- 
vid Elwell, James F. Scudder, and Siegfried Spira, each came 
close to such a discovery by finding ways to cover a cube larger 
than the one given in the answer, and George D. Parker found 
a complete solution that was essentially the same as Halton's.) 

Halton's technique involves cutting the square so that oppo- 
site sides of the cube are covered with solid squares and the rest 
of the cube is wrapped with a ribbon folded into one straight 
strip so that the amount of overlap can be as small as one wishes. 
In  wrapping, the overlap can again be made as small as one 
pleases simply by reducing the width of the ribbon. Assuming 
infinite patience and paper of infinitely small molecular dimen- 
sions, as Halton put it, this procedure will cover a cube approach- 
ing as closely as desired to the limit, a cube of side @/$. 

Fitch Cheney, a mathematician at the University of Hart- 
ford, found another way to do the same thing by extending the 
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j /' FIGURE 21 '' Cherzey method of folding a square to couer a cube 

pattern in Figure 20. By enlarging the center square as shown 
in Figure 21, he makes the four surrounding squares rectangles 
and the four corner triangles correspondingly larger. The shaded 
areas, cut as shown, can be folded as indicated to extend each 
corner triangle. ( A  turns over once, B three times.) The result: 
a pattern exactly like the one given, except that it is larger. Since 
the unavoidable overlap can be made as small as one wants, it is 
clear that this method also approaches the fl/$ cube as a limit. 

3. If each man at a circular table is either a truther or a liar, 
and each says that the man on his left is a liar, there must be an 
even number at the table, arranged so that truthers and liars al- 



ternate. (No arrangement of an odd number of truthers and 
liars is possible without at least one man describing the man on 
his left as a truther.) Consequently the club's president lied 
when he said the number was 37. Since the secretary called the 
president a liar, he must have been a truther. Therefore he 
spoke truthfully when he gave the number as 40. 

4. We were told that the two brothers who inherited a herd 
of sheep sold each sheep for the same number of dollars as there 
were sheep. If the number of sheep is n, the total number of dol- 
lars received is n2. This was paid in $10 bills plus an excess, less 
than 10, in silver dollars. 

By alternately taking bills, the older brother drew both first 
and last, and so the total amount must contain an odd number 
of 10's. Since the square of any multiple of 10 contains an even 
number of lo's, we conclude that n (the number of sheep) must 
end in a digit the square of which contains an odd number of 
10's. Only two digits, 4 and 6, have such squares: 16 and 36. 
Both squares end in 6, and so n2 (the total amount received for 
the sheep) is a number ending in 6. The excess amount con- 
sisted of six silver dollars. 

After the younger brother took the $6 he still had $4 less than 
his brother, so to even things up the older brother wrote a check 
for $2. I t  is surprising how many good mathematicians will 
work the problem correctly up to this last step, then forget that 
the check must be $2 instead of $4. 

5. Ticktacktoe on the Tri-Hex pattern [see Figure 221 is a 
win for the first player, but only if he plays first on one of the 
black spots. Regardless of his opponent's choice of a spot, the 
first player can always play so that his opponent's next move is 
forced, then make a third play that threatens a win on two 
rows, thereby ensuring a win on his last move. 

If the opening move is on a corner of the board, the second 
player can force a draw by seizing another corner. If the open- 
ing move is on a vertex of the central equilateral triangle, the 
second player can force a draw by taking another corner of that 
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FIGURE 22 

Tri-Hex solution 

triangle. For a more complete analysis see "New Boards for Old 
Games," by Thomas H. O'Beirne, in New Scientist, January 11, 
1962. 

6. The unique solution to Langford's problem with four pairs 
of cards is 41312432. I t  can be reversed, of course, but this is not 
considered a different solution. 

If n is the number of pairs, the problem has a solution only if 
n is a multiple of 4 or one less than such a multiple. C. Dudley 
Langford posed his problem in The Mathematical Gazette (Vol. 
42, October 1958, page 228). For subsequent discussion see C. J. 
Priday, "On Langford's Problem (I)," and Roy 0. Davies, "On 
Langford's Problem (11) ," both in The  Mathematical Gazette 
(Vol. 43, December 1959, pages 250-55). 

The 26 solutions for n = 7 are given in The  Mathematical 
Gazette (Vol. 55, February 1971, page 73). Numerous com- 
puter programs have confirmed this list, and found 150 solu- 
tions for n = 8. E. J. Groth and John Miller independently ran 
programs which agreed on 17,792 sequences for n = 11, and 
108,lM for n = 12. 

R. S. Nickerson, in "A Variant of Langford's Problem," 
American Mathematical Monthly (Vol. 74, May 1967, pages 
591-95), altered the rules so that the second card of a pair, each 
with value k, is the kth card after the first card; put another 
way, each pair of value k is separated by k - 1 cards. Nickerson 
proved that the problem was solvable if and only if the number 



of pairs is equal to 0 or 1 (modulo 4). John Miller ran a program 
which found three solutions for n = 4 (they are 11423243, 
11342324, and 41134232); five solutions for n = 5; 252 solu- 
tions for n = 8; and 1,328 for n = 9. 

Frank S. Gillespie and W. R. Utz, in "A Generalized Lang- 
ford Problem," Fibonacci Quarterly (Vol. 4, April 1966, pages 
184-86), extended the problem to triplets, quartets, and higher 
sets of cards. They were unable to find solutions for any sets 
higher than pairs. Eugene Levine, writing in the same journal 
("On the Generalized Langford Problem," Vol. 6, November 
1968, pages 135-38), showed that a necessary condition for a 
solution in the case of triplets is that n (the number of triplets) 
be equal to -1, 0, or 1 (modulo 9). Because he found solutions 
for n = 9, 10, 17, 18, and 19, he conjectured that the condition 
is also sufficient when n exceeds 8. The nonexistence of a solu- 
tion for n = 8 was later confirmed by a computer search. 

Levine found only one solutiori for n = 9. I know of no other 
solution; perhaps it is unique. Readers may enjoy finding it. 
Take from a deck all the cards of three suits which have digit 
values (ace through nine). Can you arrange these 27 cards in a 
row so that for each triplet of value k cards there are k cards be- 
tween the first and second card, and k cards between the second 
and third? It  is an extremely difficult combinatorial puzzle. 

D. P. Roselle and T. C. Thomasson, Jr., "On Generalized 
Langford Sequences," Journal of Combinatorial Theory (Vol. 
11, September 1971, pages 196-99), report on some new non- 
existence theorems, and give one solution each for triplets when 
n = 9, 10, and 17. So far as I am aware, no Langford sequence 
has yet been found for sets of integers higher than three, &or has 
anyone proved that such sequences do or do not exist. 

7. To solve the problem of the overlapping squares, e&nd 
two sides of the large square as shown by the dotted lines in Fig- 
ure 23. This obviously divides the small square into four con- 
gruent parts. Since the small square has an area of nine inches, 
the overlap (shaded) must have an area of 9/4, or 2% inches. 
The amusing thing about the problem is that the area of over- 
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lap is constant regardless of the large square's position as it ro- 
tates around D. The fact that B trisects AC is irrelevant infor- 
mation, designed to mislead. 

The problem appears as No. 52 in Mathematical Challenges: 
Selected Problems from the Mathematics Student Journal, ed- 
ited by Mannis Charosh (National Council of Teachers of 
Mathematics, 1965). A second solution is given, and the prob- 
lem is generalized for any regular polygon. 

8. The first round of births in Fertilia produces n children, 
where n is the total number of mothers over as long a period as 
desired. The second round produces n/2 children, the third 
round produces 4 4 ,  and so on. The total number of children 
is n ( l  + 4/e + i/q + i/g + . . .) = 2n. Dividing this by n gives 
the average number of children in a family, namely two. 

Many readers pointed out that the question cou!d be an- 
swered more simply. After showing that the ratio of boys to 
girls always remains one to one, it follows that in the long run 
there will be as many boys as there are girls. Since each family 
has exactly one son, there will be, on the average, also one girl, 
making an average family size of two children. 

9. If "Oct." is taken as an abbreviation for "octal" and 
"Dec." as an abbreviation for "decimal," then 31 (in base8 no- 



tation) is equal to 25 (in base-10 notation). This remarkable 
coiilcidence is the basic clue in "A Curious Case of Income Tax 
Fraud," one of Isaac Asirnov's tales about a club called The 
Black TVidowers. (See Ellerj Queen's Mjsterj Magazzne, November 
1976.) 

John Friedlein observed that not only does Christmas equal 
Halloween, each also equals Thanksgiving whenever it falls, as 
it sometimes does, on Novem. 27. (27 ill 9-base notation is 25 
in decimal.) 

Suzanile L. Hailauer established the equivalence of Christ- 
mas and Hallo~t~een. Oct. 3 1 can be written 1013 1 or 1,03 1. Dec. 
25 is 12/25 or 1,225. And 1,031 = 1,225 (modulo 194). 

David K. Scott and Jay Beattie independently established 
equality in an even more surprising way. Let the five letters in 
Oct. and Dec. stand for digits as follo~\rs 

TVe then decode Oct. 31 =Dec. 25 as: 

Assuming that two different letters cannot have the same 
digit, that 0 and D (standing for initial digits of numbers) may 
be assigned any digit except zero, and that the other three let- 
ters may be assigned any digit includiilg zero, there are 24,192 
different ways to assign digits. Beattie actually programmed a 
computer to test all 24,192 possibilities. The program proved 
(what Scott had conjectured) that the above equation is unique! 

10. To tie an overhand knot in the rope stretched from wrist 
to wrist, first push the center of the rope under the rope that 
circles the left wrist, as shown in Figure 24. Pass the loop over 
the left hand, then pull it back from under the rope circling the 
wrist. The loop will then be on the left arm, as shown at the 
right in the illustration. i17hen the loop is taken off the arm, 
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FIGURE 24 
How to work the knot problem 

carrying it over the left hand, it will form an overhand knot in 
the rope. 

If the loop, after it is first pushed under the rope around the 
wrist, is given a half-twist to the right before it is passed over 
the hand, the resulting knot will be a figure eight. And if the 
end of the loop is pushed through a ring before the loop goes 
over the hand, the ring will be firmly knotted to the rope after 
either type of knot is formed. 

Van Cunningham and B. L. Schwartz each wrote to point out 
that the statement of the problem did not prohibit a second so- 
lution. Fold your arms, slip one hand through one loop, the 
other hand through the other loop, then unfold your arms. 



C H A P T E R  6 

Double Acrostics 

IN MODERN SET THEORY two sets are said to intersect if they 
have one or more elements in common. The crossword puzzle, 
the Double-Crostic, and games of the Scrabble type can be 
thought of as combinatorial play in which 26 elements (letters) 
are arranged into sets (words) that intersect in the manner dic- 
tated by the rules and the geometric pattern on which the ele- 
ments are placed. Of the hundreds of varieties of word puzzles 
that exploit intersection, few have been more elegant, or have 
had as interesting a history, as the double acrostic. I t  is almost 
forgotten today, yet it was the ancestor of the crossword puzzle 
and the most popular form of word play in English-speaking 
countries throughout the last quarter of the nineteenth century 
and until the end of World War I. In London in 1915 eight 
newspapers ran a daily double acrostic. The World had carried 
the feature since its first issue in 1874, The Queen since the 
1860's. 

The double acrostic was a highly stylized form, usually writ- 
ten in verse. Here, for example, is a short specimen by Tom 
Hood, son of the English poet Thomas Hood: 
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W e  are words that rhyme, 
And we're both in time. 
One is a season, the other a song; 
If you guess them rightly, 

you can't be wrong. 

I .  
It is very good fun, 
If it's properly done. 

2. 
A beast with two toes, 
How slowly it goes! 

3. 
The sun's overhead- 
There's no more to be said! 

4. 
The sun's going to sink; 
This is coming I think. 

The first stanza gives clues for two words, called the uprights, 
that are spelled vertically by the initial and final letters of the 
words to which clues are given by the numbered stanzas. The 
two uprights must be of equal length and in some way related 
to each other. In this instance the first upright, known as the 
primal, is JUNE. The second upright, called the final, is TUNE. 
The horizontal words, defined in the numbered stanzas, are 
called the cross-lights or simply the lights. The complete an- 
swer is: 

J e s T  
U n a U  
N O O N  
E V E 

The cross-lights could vary in length, as in this instance. It 
was permissible on occasion to do such things as spell them 



backward, use only parts of them or even scramble their letters, 
provided that the required operations were specified by hints in 
the stanzas. If the middle letters of each cross-light formed a 
third upright, known as the central, the puzzle was called a tri- 
ple acrostic. 

Henry Ernest Dudeney, in a little book called The World's 
Best Word Puzzles (1925), attributes the invention of the Vic- 
torian double acrostic to Queen Victoria! The evidence for this 
is in a rare volume called Victorian Enigmas; or, Windsor Fire- 
side Researches: Being a Series of Acrostics Enigmatically Pro- 
pounded (1861), by Charlotte Eliza Capel. Miss Cape1 wrote 
that her original double acrostics had been inspired by a puzzle 
given to her five years earlier by a friend at Windsor Castle 
who told her it had been written by the Queen for the royal chil- 
dren. Although the Queen's puzzle, which Miss Cape1 repro- 
duced, is not in rhyme, it is certainly a double acrostic. Nine 
geographical words are defined (Naples, Elbe, Washington, 
Cincinnati, Amsterdam, Stamboul, Torneti, Lepanto, ecliptic), 
the initials of which spell NEWCASTLE and the finals of which, 
read in reverse, spell COAL MINES. 

Going back five years from 1861 places the date of the Queen's 
puzzle at 1856. I t  was in the Illustrated London News for Au- 
gust 30 of that year, writes Dudeney, that the first double acros- 
tic was printed. I t  bore the by-line of Cuthbert Bede, the pen 
name of Rev. Edward Bradley. Bradley called his puzzle an 
"acrostic charade" and said it was a novel type of word play 
"lately introduced." The clues to its uprights, LONDON and 
THAMES, were given by these lines: 

A mighty centre of woe and wealth; 
A world in little, a kingdom small. 

A tainted scenter, a foe to health; 
A quiet way for a wooden wall . . . 

(Apparently the problem of river pollution is not a new one.) 
The term "double acrostic" was firmly established by 1860, 

when puzzles of that type were included in a book, Charades, 
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Enigmas and Riddles, collected by someone calling himself 
A. Cantab. "The Double Acrostic," Cantab writes, "is a very 
recent invention." By 1884 the double acrostic craze had reached 
such proportions in England that an Acrostic Dictionary of 256 
pages was compiled by Phillippa Pearson, whose husband wrote 
a number of puzzle books. I t  listed 30,000 common words, al- 
phabetized by first and last letters. 

Of the hundreds of thousands of double acrostic poems pub- 
lished in Victorian newspapers, magazines, and books, none 
were more charmingly written than those by Thomas Hood, 
the younger. Like his father, he was a skillful and prodigious 
writer of humorous verse, much of it published in Fun, a comic 
weekly he edited, and later in his own periodical, T o m  Hood's 
Comic Annual. He turned out hundreds of puzzle poems of all 
types. The double acrostic in Figure 25 is from a children's 
book, Excursions into Puzzledom, by Hood and his sister, pub- 
lished in 1879, five years after Hood's death. Can the reader dis- 
cover its uprights and cross-lights? 

wwO-r*03*03*ww03*O*wwo3-~03*+O-r*O-rwO I 
3 

Ruler of all things, for a space his hand 
Is traced in sparkling lines throughout the land: 

i 
2 Painting each pane and jewelling each tree, 

S 
9 Checking the brooks and rills that trickled free; 

2 
B 

Tasting ;he roots and fruits all stored away, 
Withering the garden blooms that were so gay. f 
Such is my First,-the boys alone delight ? 
To see his silent traces over night. 
And greet him well, for long they all have reckoned 

7 
Upon his aid to help them to my Second. 

3 
7 

1 3 
Where the fairies come, we grow, ? 
Their most secret haunts we know. 
Our fringed fans are tall and green, 

3 
Pavilions for the elfin queen. 

? 
Those that with all careful heed, 

3 
Sow at night our mystic seed, 

T 
May her sportive revels see ? 
Underneath the greenwood tree! ?! 

[CONTINUED] 



2 
3 When a frisky fancy takes 9 
f The jovial Land of Cakes, 

She calls for her piper to play her a tune, 
T 

3 
Till the very roof-tree shakes! 

3 
f And then ere it grows too late, 

f 
3 A pekplexing figure of eight 3 
T Is danced by the lads and lasses all T 

f At a most astonishing rate! 3 
3 

f 
3 When Pierre meets Marie in the lane, 

3 
f And slyly steals a kiss, ? 
3 He asks a question clear and plain, 3 
? To which she answersthis! ? 
3 

4 
3 

0 
No traveller of modern times 

T 
3 Such wondrous tales narrated;- 

0 
T As of this ancient mariner 7 
3 Have been most gravely stated. 3 
f 

5 
a 

S 
When the storm king rises 

S 
I 

From his cloudy lair, 
I 

? And his muttered anger 3 
t Grumbles in the air; ? 
3 Doors and windows rattle, 3 
7 Sign-posts creak and groan. 

And from roof and rafter 
Z 

S 
This is roughly blown. 

9 
T T 
3 3 
*oM*****M*******MuQ****+*** 

FIGURE 25 

A typical double acrostic by Tom Hood 

I t  is no surprise to learn that Lewis Carroll, who enjoyed all 
kinds of puzzles, was addicted to the double acrostic and was the 
creator of many splendid specimens. His best is one that first 
appeared in his 1869 book Phantasmagoria [see Figure 261. An 
entry in Carroll's Diary for June 25, 1867, reads: "Blore [one 
of Carroll's mathematics students at Christ Church, Oxford] 
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brought his niece Miss Keyser to see photographs-I took a cou- 
ple of her as well. Sat up listening to the music of the Christ 
Church Ball and wrote, at Miss Keyser's request, another one of 
those acrostic ballads of which I had given Blore some before." 

This is how Carroll later introduced the ballad in Phantasma- 
goria: "[It] was written at the request of some young friends, 
who had gone to a ball at an Oxford Commemoration-and also 
as a specimen of what might be done by making the Double 
Acrostic a connected poem instead of what it has hitherto been, 
a string of disjointed stanzas, on every conceivable subject, and 
about as interesting to read straight through as a page of a Cy- 
clopedia. The first two stanzas describe the two main words, 
and each subsequent stanza one of the cross-lights." 

Carroll did not disclose the solution, but in 1932, when Mac- 
millan issued The Collected Verse of Lewis Carroll (there is a 
Dover reprint called The Humorous Verse of Lewis Carroll), 
an anonymous editor appended to the poem what he believed to 
be its two uprights, COMMEMORATION and MONSTROSITIES, with- 
out supplying the cross-lights. The answer, which has dogged 
the poem ever since, is unquestionably wrong. As far as I know, 
the first printing of the correct uprights was in "The Best 
Acrostics," an article by H. Cuthbert Scott in The Strand Mag- 
azine (Vol. 50, December 1915, pages 722-28), with answers 
on page 109 of the next issue. The primal upright is QUASI- 

INSANITY, the final COMMEMORATION. Readers should enjoy 
searching for the cross-lights; there is little doubt about any but 
the fourth and the ninth. 

I t  is easy to see how the double and triple acrostic, with its 
two or three vertical words, evolved into more complicated 
forms, including the crossword puzzle and such later variants 
as the Double-Crostic. The first crossword deserving the name 
was constructed by Arthur Wynne of Liverpool, who came to 
the United States around the turn of the century to begin a ca- 
reer in journalism. He was the editor of Fun, a Sunday supple- 
ment of the New York World, when he published in it on De- 
cember 21, 191 3, his first "Word-Cross Puzzle." (The interested 



~"W:H~::.~*:**:**.:*:**:**:W:N:**:*O:**:**:+*:*.:.+:W:.*:.~:*~~:W:*~:.+:**:**:*V~~:W:.+:.*~.:..:*:+.:~:+.:+~:*+:~$~~~:..*. 4* 
8 +:* .:. 
C* THERE was an ancient City, stricken down .:. *:* .:. With a strange frenzy, and for many a day .:. .:. .:. They paced from morn to eve the crowded town, .:. .:. .I 

.*. 
And danced the night away. 4, 

4. *** 

g I asked the cause: the aged man grew sad: A 
They pointed to a building gray and tall, 8 

$ And hoarsely answered "Step inside, my lad, .*. 
.$ 

*.* .:. And then you'll see it all." .:. .:. .*. 4. .:. 
<* 
r*. 

1 R 
E. Yet what are all such gaieties to me * 
A Whose thoughts are full of indices and surds? A 8 x2+ 71 + 53 A 

i 
*** 11 4. 3. 7 -- *:. & .:. 3 *:. .:. .*. 4. 
r:. .:. 2 .'. R 
4. But something whispered "It will soon be done: 4 
8. Bands cannot always play, nor ladies smile: A X 
A Endure with patience the distasteful fun A 
A 
3. For just a little while!" * 4. A r:. 4 

3 
*:* *:. .:* .:. A change came o'er my Vision-it was night: .*. .:. 4. 

.*. We clove a pathway through a frantic throng: .*. 
i 
3. The steeds, wild-plunging, filled us with affright: .f. t The chariots whirled along. .:. .*. .:* 
bf. *:. 
.** 

4 
.:. 4. .:. 

9 Within a marble hall a river ran- .:. .:. .:* 
.*. .!. A living tide, half muslin and half cloth: .:. And here one mourned a broken wreath or fan, 

P 
3: 

*% Yet swallowed down her wrath; 4. ** 
3. 
.$ X 34 
X 5 4* 
4. And here one offered to a thirsty fair 

.:* .:. .:* 
.:* (His words half-drowned amid those thunders tuneful) .:. 
8. 

<* 
Some frozen viand (there were many there), 

$ A tooth-ache in each spoonful. 
*.* 
P *.* 

FIGURE 26 
Lewis Carroll's most dificult double acrostic 
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6 
There comes a happy pause, for human strength 

R 
Will not endure to dance without cessation; 1 

And every one must reach the point at length $ 8. 
Of absolute prostration. g 

7 :< 
At such a moment ladies learn to give, i 

8. 
To partners who would urge them overmuch, 

A flat and yet decided negative- 
f 
3. 

Photographers love such. i 
1 

*-. 8 t* 
There comes a welcome summons-hope revives, 2 

i And fading eyes grow bright, and pulses quicken: 
Incessant pop the corks, and busy knives B 

Dispense the tongue and chicken. $ 
8 .:. 

9 
.:. 

B .:. 
Flushed with new life, the crowd flows back again: .*. 

Q 
84 And all is tangled talk and mazy motion- ! S Much like a waving field of golden grain, 

Or a tempestuous ocean. 2. 
I; X 

10 6 1 And thus they give the time, that Nature meant 9 
For peaceful sleep and meditative snores, *$ 

*. To ceaseless din and mindless merriment 8 
.*r 
4 And waste of shoes and floors. 
R 
3 I1 

X And One (we name him not) that flies the flowers, 
a 3 

f That dreads the dances, and that shuns the salads, 
They doom to pass in  solitude the hours, 

f 
8. Writing acrostic-ballads. 4 
1 12 

How late it grows! The hour is surely past 

S: 
That should have warned us with its double knock? 

The twilight wanes, and morning comes at last- 
I 5 

"Oh, Uncle, what's o'clock?" 9 d 9 

1 13 

4. The Uncle gravely nods, and wisely winks. 
It  may mean much, but how is one to know? 

He opes his mouth-yet out of it, methinks, 
No words of wisdom flow. 



reader will find it reproduced in Clark Kinnaird's Encyclopedia 
of Puzzles and Pastimes, 1946, page 80.) It  was such an im- 
mediate success that Wynne began composing similar puzzles 
in all shapes and sizes. 

In 1924 two young men, Richard Simon and Max Schuster, 
opened a book-publishing office in New York. Simon's aunt had 
a sick friend who was addicted to the World's crosswords. Was 
there a book of such things, she asked her nephew, that she 
could give her friend? There was not. Simon and Schuster made 
arrangements to reprint fifty of the World's crosswords ("The 
worst idea since prohibition," the World's editors said) and per- 
suaded the Venus Pencil Company to donate 50,000 pencils to 
be attached to the book's cover as a promotional stunt. The first 
50,000 copies of The Cross Word Puzzle Book, under the im- 
print of the Plaza Publishing Company, sold out in three 
months, touching off a craze that spread quickly to England 
and France ("les mots crois~s") and other countries. In Canada 
a bilingual form became popular, with English words going one 
way and French words the other. During the next twenty years 
the house of Simon and Schuster sold more than two million 
copies of crossword books. 

Most newspapers in the United States began to publish a 
daily crossword in 1924. The astonished World announced late 
that year that its first daily puzzle would be composed by Gelett 
Burgess, of purple-cow fame, and added: 

The fans they chew their pencils, 
The fans they beat their wives, 

They look up words for extinct birds- 
They lead such puzzling lives! 

The New York Times was the last major paper to succumb. 
In 1942 it instituted its Sunday puzzle, edited by Margaret Far- 
rar, the wife of the publisher John Farrar and crossword puzzle 
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editor of the Times until her retirement in 1969. (As Margaret 
Petherbridge she had been one of the three editors of Simon and 
Schuster's first puzzle book.) More than 90 percent of the na- 
tion's newspapers now have a daily crossword, and millions of 
crossword books are sold annually. I t  is the most popular type 
of puzzle in all parts of the world except in countries, such as 
China and Japan, where the language does not have individual 
letters and therefore is not suitable for intersecting word pat- 
terns. 

The Double-Crostic, in which the words of a literary quota- 
tion and the name of the author and his work are derived from 
words clued by cryptic definitions, was invented by a Wellesley 
College graduate and Brooklyn high school English teacher, 
Elizabeth Seelman Kingsley. Mrs. Kingsley's first Double- 
Crostic appeared in the Saturday Review of Literature in March 
1934, to be followed by a large output of Double-Crostics for 
that magazine, other magazines, and numerous Simon and 
Schuster books. When she retired in 1952, the work was con- 
tinued by her assistant, Doris Nash Wortman, until Mrs. Wort- 
man's death in 1967. The term "Double-Crostic" is a registered 
trademark, but the puzzle form appears regularly under other 
names. 

One of the earliest and hardest-to-compose variants on the 
double acrostic is the word square, which can be thought of as a 
kind of ultimate acrostic because every letter in it marks an in- 
tersection of two words. A set of n horizontal words, each of n 
letters, intersects with another set of n vertical words of n letters 
that are read down. The uprights are sometimes identical with 
the horizontals, sometimes a different set entirely. Dudeney 
says in his book on word puzzles that he was the first to put the 
definitions for such squares into verse, and he gives a number of 
examples. Edmund Wilson, who shared with his literary antag- 
onist Vladimir Nabokov a liking for word play, once tried his 
hand at versifying word squares. In  one example from Wilson's 
Night Thoughts (1961) the five horizontal words are given 



first, followed by clues to five different words that form the 
uprights [see Figure 271. Can the reader construct Wilson's 
square? 

My first is a garment that fastens behind; 
My second applies to a lush little lake; 

My third in your Handworterbuch you will find 
May mean whilst or because; my fourth is a fake: 

The Association of Impotent Old Apoplectic Parties; 
My fifth is the steamship Nigerian Royal Highness; 

My sixth a confection of musical art is; 
My seventh an organ remote from the sinus; 

My eighth is a painter fantastic and French; 
My ninth is exclaimed at a wrench or a stench; 
And my tenth is a nimble but mythical wench. 

FIGURE 27 
Five-by-five word-square poem by Edmund Wilson 

A N S W E R S  

THE UPRIGHTS of Tom Hood's double acrostic are FROST and 
SLIDE. The cross-lights are FERNS, REEL, our, SINDBAD, TILE. 

Lewis Carroll's double acrostic, with the uprights QUASI- 

INSANITY and COMMEMORATION, was given the following so- 
lution in the 1915 Strand Magazine article cited earlier: l. QUA- 

DRATIC; 2. UNDERGO; 3. ALARM; 4. STREAM; 5. ICE; 6. INTERIM; 

7. NO; 8. SUPPER; 9. ARENA; 10. NIGHT; 11. I; 12. TWO; 13. YAWN. 

The author of the article was uncertain about the ninth, suggest- 
ing ARISTA as an alternative, although admitting that neither 
word was satisfactory. My own guess is AURORA, which some- 
times resembles folds of drapery that wave with a "mazy mo- 
tion." Dmitri A. Borgmann, author of the book of word play Be- 
yond Language, focuses on the phrase "tangled talk'' in the 
ninth stanza, for which he suggests ABRACADABRA. AS an alterna- 
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tive to the fourth cross-light, Borgmann proposes SCRIM, a coarse 
cotton fabric that could be "half muslin and half cloth." 

The ambiguity in the fourth and ninth cross-lights brought a 
large number of interesting letters. Martin Burkenroad noticed 
that the poem contained two phrases from Coleridge's Kubla 
Khan, "river ran" and "mazy motion" as well as the capitalized 
word "Vision" and the cross-light "ice," but these allusions 
were of no help in clearing up the two ambiguous cross-lights. 

I cannot list all who wrote to give their arguments, but I shall 
cite some of the words that were suggested. Most readers agreed 
that "stream" was the best choice for the fourth cross-light, re- 
ferring to the divided river of men in black cloth and girls in 
muslin dresses. Four readers preferred "swarm," four "stoi- 
cism" ("swallowed down her wrath"), and three "schism." 
Other proposals were "seam," "spasm," and "scrum" (a rugby 
formation). 

The ninth cross-light, for which "arena," "aurora," and 
"abracadabra" had been suggested, prompted four readers to 
propose "America" and four "asea." Three preferred "aphasia," 
three "agora." Others suggested "alfalfa," "ataxia," "arista," 
"arcadia," "avena," and "anarrhoea" (Greek for the flowing 
back of a tide after the ebb). 

E. Robinson Rowe concluded, after a long and good analysis, 
that correct solutions for cross-lights 4 and 9 and possibly for 
others may have hinged on allusions to contemporary history 
or fiction or to local Oxford customs; the student for whom Car- 
roll wrote his puzzle poem (he is the "Uncle" of stanzas 12 and 
13) may have had much less difficulty with the answers than 
we do today. 

The horizontal lines of Edmund Wilson's word square are 
APRON, REEDY, INDEM, A.I.o.A.P., and S.S.N.R.H. The vertical lines 
are ARIAS, PENIS, REDON, o DEAR!, and NYMPH. 



C H A P T E R  7 

Playing Cards 

PLAYING CARDS, with their numerical values, four suits, two 
colors, backs and fronts, and easy randomizing, have long pro- 
vided recreational mathematicians with a paradise of possibili- 
ties. In this chapter we consider a few remarkable new combi- 
natorial problems and paradoxes for which playing cards are 
ideal working models. 

In Chapter 9 of my New Mathematical Diversions from Sci- 
entific American, I mentioned briefly a curious principle discov- 
ered by a young amateur magician, Norman Gilbreath. Ar- 
range a deck of cards so its red and black cards alternate. Cut 
the deck to form two piles, breaking the deck so that the top 
cards of each pile are of different colors. If the two piles are 
now riffle-shuffled into each other, every pair of cards, from the 
top down, will consist of one red and one black card. (You can 
let someone else do the single shuffle and then play him 26 
rounds of matching colors. You each take a card from the top of 
the deck; your opponent wins if the cards match. Of course you 
win every time.) Gilbreath later discovered that his principle is 
only a special case of what magicians now call the Gilbreath 
general principle. I t  applies to any repeating series of symbols 
and can best be explained by a few examples. 
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Arrange a deck so that the suits repeat throughout in the 
same order, say spades, hearts, clubs, and diamonds. From the 
top of this deck deal the cards one at a time to the table to form 
a pile of 20 to 30 cards. (Actually it does not matter in the least 
how many cards are in this pile.) Riffle-shuffle the two parts of 
the deck together. Believe it or not, every quartet of cards, from 
the top down, will now contain a card of each suit. Dozens of 
subtle card tricks exploiting Gilbreath's general principle have 
been published in magic periodicals. The simplest trick is to let 
someone deal and shuffle, take the deck behind your back (or 
under a table), then pretend to feel the suits with your fingers 
and bring out the cards in groups of four, each containing all 
four suits. 

It is necessary that one packet be reversed before the shuffle. 
Dealing cards to the table does this automatically. Another 
method is to cut off a portion of the deck, turn it over and shuffle 
this face-up packet into the rest of the deck, which remains face 
down. A third method is to take cards singly from the top of the 
deck and push them into the pack, inserting the first card near 
the bottom, the next anywhere above the previously inserted 
card (directly above it if you wish), the third above that, and 
so on until you have gone as high as you can. This is equivalent 
to cutting off a packet, reversing its order and riffle-shuffling. 
The deck's original order is destroyed, of course, but the cards 
remain strongly ordered in the sense that each group of four 
cards contains all four suits. 

A trick applying the Gilbreath principle to a repeating series 
of length 52 is to arrange one full deck so that its cards are in 
the same order from top to bottom as the cards in a second deck 
are from bottom to top. If the two decks are riffle-shuffled into 
each other and then cut exactly at midpoint, each half will be a 
complete deck of 52 different cards! 

Gilbreath's general principle points up how poorly a riffle- 
shuffle randomizes. This inefficiency of the riffle-shuffle pro- 
vided another mathemagician, Rev. Joseph K. Siberz of Boston 
College, with what may well be the first computer program that 
teaches a computer how to do a mystifying card trick. The trick 



uses 52 IBM punched cards, each bearing the name of a differ- 
ent playing card. Both program and "deck" are entered in the 
computer, which then prints the following instructions: 

1. Give the deck several single cuts and a riffle-shuffle. 
2. Cut the deck into two piles. 
3. Look at the top card of one pile and remember it. 
4. Bury this card in the pile from which it came, then riffle- 

shuffle the two piles together. 
5. Cut the deck, complete the cut, and repeat several times if 

you wish. 
6. Now give the deck back to me and I shall find your card. 
If the card was, say, the five of hearts, the computer quickly 

prints out: "Your card was the five of hearts. Don't ask me how 
I do it. Magicians never reveal their secrets. Take another card 
and I shall do it again." If the person has failed to follow in- 
structions exactly, the computer sometimes finds the card any- 
way, perhaps after asking the spectator for additional informa- 
tion: "I am having trouble determining the color of your card. 
Please help me by turning on switch B if it is black or switch C 
if it is red." This is followed by, "Thank you. Your card 
is . . ." If the instructions were not followed and the computer 
cannot find the card, it prints, "You did not follow my direc- 
tions. Please take another card and try again." If this happens 
again, the computer politely asks for still another try, but after 
a third goof it says, "I won't find your $$=) $* * card if you re- 
fuse to do it my way. Please try again." 

It is not hard to see how the program finds the card. The two 
riffle-shuffles merely break the deck's original cyclic order into 
four interlocking sequences. If the instructions are followed 
correctly, a single card will be missing from where it should be 
in one of those sequences. While it is identifying the card, the 
computer memorizes the deck's new order and therefore is all 
set for an immediate repetition of the trick. The reader can 
easily perform the trick himself by recording the order of a 
deck or using an unopened pack, which comes from the manu- 
facturer in a simply ordered sequence that can be memorized 
while you remove the joker and the extra cards. After a spec- 
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tator has followed the instructions given above you can take the 
twice-shuffled deck to another room; by checking the cards off 
on your list it is easy to determine the single card that is out of 
place. 

On the television show Maverick, popular in the mid-1960's, 
the gambler Bart Maverick bet someone he could take 25 cards, 
selected at random, and arrange them into five poker hands 
each of which would be a straight or better. (The hands higher 
than a straight are flush, full house, four of a kind, straight 
flush, and royal flush.) The same bet was made on television in 
1967 by Paul Bryan in an episode of Run for Your Life. It  is 
what gamblers call a "proposition"-a bet for which the odds 
seem against the person making it when actually they are 
strongly in his favor. If the reader will experiment with 25 
randomly chosen cards, he will be surprised at the ease with 
which five hands can be arranged. Try the flushes first (there 
will be at least two), then look for straights and full houses. I 
have no idea of the actual probability of success, but it is ex- 
tremely high. Indeed, the question arises: Is success always 
possible? The answer is no. There are sets of 25 cards that can- 
not be partitioned into five poker hands of straight or better. 

With this introduction the reader is invited to consider the 25 
cards shown in Figure 28. Can the bet be won with this set? If 
so, find five hands. If not, prove that it is impossible. This in- 
genious puzzle is quickly solved if you go about it correctly; a 
single card is the key. The puzzle was sent to me by Hamp 
Stevens. 

For a second combinatorial problem the reader is asked to 
place any three playing cards face down in a row. The task is to 
turn one card at a time and in seven moves produce all the z3 = 
8 different permutations of face-up and face-down cards, ending 
with the three cards face up. There are six ways to do it. Letting 
F stand for the face, B for the back, one solution is BBB, BBF, 
BFF, BFB, FFB, FBB, FBF, and FFF. (These eight permuta- 
tions, by the way, correspond to the eight rows of a "truth ta- 
ble" giving the eight possible combinations of true and false for 
three statements in the propositional calculus of symbolic 



FIGURE 28 

Can these cards be arranged to form five poker hands, 
all straight or better? 
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logic.) Is there a solution with four cards? There are now Z4 = 
16 different permutations. The problem is to start with four 
face-down cards, turn one at a time, and in 15 moves run 
through all 16 permutations, the last one being the four cards 
face up. It turns out that this is not possible. The problem, 
which appeared in Mannis Charosh's column in The Mathe- 
matics Student Journal, is to find a simple way of proving im- 
possibility. The proof leads quickly to a generalization for rows 
of n cards. 

C. L. Baker has called my attention to a little-known solitaire 
game he found could be simplified to provide an endless series 
of engrossing combinatorial puzzles. The game was taught 
Baker by his father, who in turn learned it from an Englishman 
during the 1920's. I t  differs from most solitaire games in that, 
although the initial pattern is determined by chance, once the 
cards have been placed the player has complete information. 
Each initial layout is therefore either solvable or unsolvable, 
and finding a solution becomes a stimulating challenge. As in 
chess, one must think ahead many moves because any mistake 
in play is irreversible. The game has a peculiar flavor of its 
own, somewhat akin to sliding-block puzzles. The probability of 
winning is high if one is skillful, and the more one plays the 
more skillful one becomes. 

To play the game with a full deck shuffle the 52 cards, then 
deal them face up into the eight-column array shown in Figure 
29. The dealing is left to right, with the cards overlapping as 
pictured. (This places seven cards in the first four columns and 
six in the last four.) Baker calls the columns "board columns" 
and labels them BI to B8. The four dotted cells above the layout 
are called "playoff cells," P i ,  P2, P3, P4. They are empty at the 
start. The object of the game is to place on each of those cells, in 
consecutive order starting with the ace, all 13 cards of the same 
suit. The game is won if, and only if, all four playoff cells are 
completely filled. 



The four dotted cells below the layout, TI,  T2, T3, T4, are 
called "temporary cells." In the course of play a single card (no 

FIGURE 29 
Schematic layout for C. L. Baker's solitaire game, order-4 version 

more) can be placed on any one of those cells. They can, there- 
fore, hold a maximum of four cards. 

The rules are as follows: 
1. Only one card may be moved at a time. 
2. Only the top (uncovered) card may be moved from any B 

column. 
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3. An ace may be played on any empty P cell. On top of it 
may be played the deuce of the same suit, then the three, and so 
on through the king. These cards may come from the exposed 
ends of columns or from the T cells. 

4. An uncovered card in a B column may be shifted to be- 
come the uncovered card of another B column only if it goes on 
a next-higher card of the same suit. 

5. Any card may be played on an empty T cell and remain 
there until you wish to move it somewhere else. 

6. If a B column becomes empty, any movable card may be 
placed on it as a new starting card. 

7. A card on a T cell may be moved to a P cell, to an empty B 
column, or to a filled B column provided it goes on a next-higher 
card of the same suit. 

I t  was Baker's happy discovery that removing one, two, or 
three suits from the full deck creates games of "lower order." 
For the three-suit, or order-3, game, the cards are dealt into 
seven columns, and there are three P cells and three T cells. 
The order-2 game (two suits) has six columns, two P cells, and 
two T cells. The order-1 game has five columns, one P cell, and 
one T cell. Are all layouts solvable? 

The order-2 is an ideal introduction to the game. The reader 
is urged at this point to obtain a deck, remove two of the suits, 
shuffle the remaining 26 cards, and deal a random layout. Only 
actual play will convey the game's fascination. I t  is a good plan 
to keep a record of each starting pattern because if you fail to 
win, you may want to restore the original layout and try a dif- 
ferent strategy. Perhaps a friend or a member of the family 
will take a crack at the same pattern. Not all starting layouts 
are solvable, but often a seemingly hopeless pattern can finally 
be broken by devious lines of play. 

For our final problem the reader is asked to try his skill at the 
order-2 game shown in Figure 30, in which the spades and 
hearts are arranged consecutively. It can be solved, but what is 
the shortest solution? 



Can this order-2 game be won in fewer than 50 moves? 

All kinds of difficult combinatorial questions are posed by 
Baker's game (I call it that because I have not so far discovered 
if the game has a name). Among many questions raised by 
Baker, and for which he has no answers, are the following: Does 
the probability of winning decrease as order-n increases? If so, 
does it approach zero or some nonzero limit? For a given order 
what is the maximum number of moves that may be required 
for a minimum-move solution? 



Playing Cards 103 

A N S W E R S  

THE SET OF 25 cards cannot be arranged to make five poker 
hands each of which is a straight or better. The key to the proof is 
the four of hearts. There is no three or five in the set, so the 
four of hearts cannot be part of a straight. There are only three 
other heart cards, so it cannot be part of a flush. I t  is the only 
four, so it cannot be part of a full house. Finally, there is no set 
of four cards of like value, so the four of hearts cannot be the 
fifth card accompanying four of a kind. 

The second problem was to prove that, starting with a row 
of four face-down cards, you cannot turn up one card at a time 
and run through all 16 possible permutations of face-up and 
face-down cards, ending with four face-up cards. The proof uses 
a simple parity check. Each time a card is turned, it changes 
the parity of the face-up cards from odd to even or vice versa. 
At the start the parity of face-up cards is even (zero is an even 
number), therefore the 16th and last permutation must be odd. 
The problem specified, however, that the final permutation 
must be four face-up cards, an even number; consequently 
the problem is unsolvable. 

Are all order-1 layouts of the solitaire game solvable? The 
answer is no. There are many thousands of impossible initial 
patterns (e.g., 6, J, A, 8, 9 in the first row, K, 4, 3, 7, 10 in the 
second, Q, 5 , 2  in the third). I t  is estimated, however, that more 
than 99 percent of the starting patterns are solvable, and their 
solutions are easily found. A more difficult question, not yet 
answered, is to establish the maximum number of moves that 
provides a minimum solution for an initial layout. Nor has this 
been answered for the order-2 game. 

The fourth problem was to solve the order-2 game with the 
starting pattern shown in Figure 30, and to do it in the fewest 
number of moves. More than 65 Scientific American readers 
found solutions in 49 moves, surely the minimum. All had in 
common the placing of 13 hearts on a P cell in 32 moves, with 
the remaining 17 moves used to put the remaining spades on 
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FIGURE 31 
A 49-move solution for solitaire game 

the other P cell. The first 49-solution received, from Warren 
H. Ohlrich, is shown in Figure 31. 
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Finger Arithmetic 
Ah why, ye gods! should two and two make four? 

-ALEXANDER POPE, The Dunciad, Book 2 

ANTHROPOLOGISTS have yet to find a primitive society whose 
members are unable to count. For some time they assumed that 
if an aboriginal tribe had no words for numbers except "one," 

and "many," its members could not count beyond two, 
and they were mystified by the uncanny ability of such people 
to look over a herd of sheep, for example, and say one was miss- 
ing. Some anthropologists believed these tribesmen had a phe- 
nomenal memory, retaining in their heads a gestalt of the 
entire herd, or perhaps knew each sheep personally and remem- 
bered its face. Later investigators discovered that the use of the 
same word for all numbers above two no more meant that a 
tribesman was unaware of the difference between five and six 
pebbles than the use of the same word for blue and green meant 
that he was unaware of the difference in color between green 
grass and blue sky. Tribes with limited number vocabularies 
had elaborate ways of counting on their fingers, toes, and other 
parts of their anatomy in a specified order and entirely in their 
heads. Instead of remembering a word for 15 a man simply re- 
called he had stopped his mental count on, say, his left big toe. 



Most primitive counting systems were based on 5, 10, or 20, 
and one of the few things on which cultural anthropologists 
are in total agreement (and in agreement with Aristotle) is that 
the reason for this is that the human animal has 5 fingers on 
one hand, 10 on both, and 20 fingers and toes. There have been 
many exceptions. Certain aboriginal cultures in Africa, Aus- 
tralia, and South America used a binary system. A few devel- 
oped a ternary system; one tribe in Brazil is said to have 
counted on the three joints of each finger. The quaternary, or 
4-base, system is even rarer, confined mostly to some South 
American tribes and the Yuki Indians of California, who 
counted on the spaces between their fingers. 

The $-base has been used much more widely than any other. 
In  many languages the words for "five" and " h a n d  either are 
the same or are closely related to earlier words; pentcha, for 
example, is "hand" in Persian and pantcha is "five" in Sanskrit. 
The Tamanacos, a South American Indian tribe, used the same 
word for 5 that they used for "a whole hand." Their word for 6 
meant "one on the other hand," 7 was "two on the other hand," 
and so on for 8 and 9; 10 was "both hands." For 11 through 14 
they stretched out both hands and counted "one on the foot, 
two on the foot," and so forth, until they came to 15, which was 
"a whole foot." As one might guess, the system continued with 
16 expressed as "one on the other foot," and so on through 19. 
Twenty was the Tamanacos' word for "one Indian," 21 was "one 
on the hand of another Indian." "Two Indians" meant 40, 
"three Indians" 60. The ancient Java and Aztec weeks were 
five days long, and there is a theory that the Roman X for 10 
was derived from two V's, one upside down, and that the V was 
a representation of a human hand. 

Early number words were frequently identical with words 
for fingers, toes, and other parts of the body. The present Eng- 
lish use of "digit," from the Latin for "finger," for the ten num- 
bers 0 through 9 testifies to an early finger origin of Anglo- 
Saxon counting. There are amusing exceptions. The Maori 
word for 4 is "dog," apparently because a dog has four legs. 



Finger Arithmetic 107 

Among the Abipbnes, a now vanished South American Indian 
tribe, the word for 4 meant "the toes of the rhea9'-three in 
front and one in back. 

Primitive number systems with bases of 6 through 9 are ex- 
tremely rare. Apparently once people found a need to name 
numbers greater than five they usually jumped from one hand 
to the other and adopted a 10-base system. The ancient Chinese 
used a base of 10, as did the Egyptians, the Greeks, and the Ro- 
mans. One of the curiosities of ancient mathematics was the 
sexagesimal (base-60) system that the Babylonians took over 
from the Sumerians and with which they achieved a remark- 
ably advanced mathematics. (Our ways of measuring time and 
angles are relics of the Babylonian system.) Today 10 is almost 
universal as a number base throughout the world, even among 
primitive tribes. David Eugene Smith, in the first chapter of his 
History of Mathematics, first published in 1923, reports that a 
survey of seventy African tribes revealed that all of them used 
a 10-base system. 

Above 5, very few number systems have been based on 
primes. W. W. Rouse Ball, in A Short Account of the History 
of Mathematics (fourth edition, 1908), cites only the '/-base 
system of the Bolas, a West African tribe, and the 11-base sys- 
tem of the early Maoris, although I cannot vouch for either 
assertion. Vigesimal, or 20-base, systems (fingers plus toes) 
were fairly common, the Mayan system being the outstanding 
instance. Because it used both zero and positional notation it 
was one of the most advanced of the ancient number systems, 
far superior, for example, to the clumsy Roman system (a state- 
ment that gives the jitters to cultural relativists since it suggests 
a value judgment that vaults cultural boundaries). The 20-base 
system survives today as words in such languages as French 
(quatre-vingts for 80), English ("Fourscore and seven years 
ago . . ."), and particularly Danish, in which number names 
are based on a curious mixture of the decimal and vigesimal 
systems. 

The obvious connection between 5 and 10, the most popular 



ancient bases, and the fingers of one and two hands has sug- 
gested to many science-fiction writers that the number systems 
of extraterrestrial humanoids are likewise based on the number 
of fingers they possess. (The creatures in Walt Disney's ani- 
mated-cartoon culture presumably use a 4- or 8-base system, 
since they have only four fingers on each hand.) Harry L. Nel- 
son of Livermore, California, sent the following puzzle: Sup- 
pose a space probe to Venus sends back a picture of an addition 
sum scratched on a wall [see Figure 32). Assuming that the 
Venusians use a positional notation like ours and a number 
base corresponding to the fingers on one Venusian hand, how 
many fingers are on that hand? (We also assume that numbers 
do not begin with zero. Otherwise, the sum could be in decimal 
notation: 05 + 05 = 010.) 

FIGURE 32 
A sum in "Venusian" notation 

Now that the decimal system is so universally established 
there seems to be no chance that the human race will convert 
to another number base, in spite of the fact that a duodecimal 
(base-12) system offers certain practical advantages, such as 
having four divisors for the base compared with only two for 
the decimal base. It  has had enthusiastic advocates for centuries. 
And there are technical advantages, although mostly for num- 
ber theorists, to a prime-number base, such as 7 or 11, as ar- 
gued by the eighteenth-century French mathematician Joseph 
Louis Lagrange. 

Powers of 2, particularly 8 and 16, have been defended as 
number bases by many mathematicians. "As there is no doubt 
that our ancestors originated the decimal system by counting 
on their fingers," wrote W. Woolsey Johnson in the Bulletin 
of the New York Mathematical Society (October 1891, page 6), 



"ve must, in ~ i e ~ t  of the illerits of the octonan s~s t em,  feel pro- 
foimcl iegiet that the\ should ha\ e pel\ el seh counted the11 
thunibs, although nature has differentiated tllern from the fin- 
gerc snffic~entlx, che m ~ g h t  haxe thought, to ca\e the race fio~ll 
this error." 

Donald E. Knuth ~nforms me that Enlanuel S~tedenboig, in 
1718, nrote a tieatise, A ileal ststem of leckorzz?lg u11zzch ~ ~ L J ~ I S  011 8 
znstead of the ~ i \un l  t1i~iz1ng at 10, trdnsldted b~ Afi-ed Acton dnd 
pnbl~shed b, the S~tedenborg Scient~fic hssoc~at~on,  Ph~ladel- 
phia, in 1941 S\$edenboig gi\es a ne\t nonlei~clatuie for digits 
and concludes, "Should the ~jlactice of the use and the use of 
the pi actice gi\ e its appio\ al, I suppose that the leained norld 
\\ill gain illcredible benefits from this octonarJ reckoning." 
Incidentallx, it has recentl~ been disco1 ered that cron s are capa- 
ble of counting up to 7 See "The Brain of Birds," br Laurence 
Ja1 Stettner. and Kennet11 A. Mat\ n~ak ,  5czentzjc Amel zctlrl, June 
1968 

In a chapter on the ternas1 system. (in mj  Sixth Book of 
il.lnthe71zatzcal Galtzeu) I illentiorled the strange rlorilenclature 
devised bv two matl~ernaticians u l ~ o  ureferred a 16-base. I has- 

I 

ten to add that nlodern coinputers have long been using a base- 
8 ai-ithnletic; illore recently a "hexadecimal" (base-16) arithnle- 
tic,usingthe 16digi ts0,  1 ,  2 , 3 , 4 , 5 , 6 ,  7 , 8 , 9 , 1 \ , B , C , D , E ,  
F, has becoine an iriiportallt part of the language of IBM's Sys- 
tern1360 computers. 

Just as primitive societies varied in their choice of a number 
base, so they varied in the style in \vhich they coimted. Since 
illost people are right-handed, counting was usually started oil 
the left hand, sonletiines in an unvarj ing, ritualistic I$ ay and 
sometimes not. A person might begin the count at the thumb or 
little finger, either by tapping with a right fingel; by bending 
dotvn the left fingers, or by starting tvith a closed fist and open- 
ing the fingers one at a time. On the Andaman Islands in the 
Bay of Bengal people started with the little finger and tapped 
their nose \$-it11 s~~ccessi\,e fingers. On an island in the Torres 
Strait betxveen Australia and Ke~v Guinea people would count to 
five by tapping the fingers of their left hand, but instead of 



going on to the right hand they tapped their left wrist, left el- 
bow, left shoulder, left nipple and sternum, then continued the 
count by reversing this order on the right side of their body. 
Mathematicians have made the point that when fingers and 
other parts of the body are successively tapped in counting, they 
are being used to express ordinal numbers (first, second, third, 
and so on), whereas when fingers are raised all at once to sig- 
nify, say, four frogs, they are expressing the cardinal number 
(one, two, three, and so on) of a set. 

The ancient Greeks had an elaborate hand symbolism for 
counting from one to numbers in the thousands; it is mentioned 
by Herodotus but little is known about its finger positions. The 
ancient Chinese and other Oriental cultures had finger symbols 
of similar complexity that are still used for bargaining in ba- 
zaars, where the expressed number can be concealed from by- 
standers by a cloak. The Roman method of symbolizing num- 
bers with the hands is mentioned by many Roman authors. In 
the eighth century the Venerable Bede devoted the first chap- 
ter of a Latin treatise, The Reckoning of Times (such as calcu- 
lating the dates of Easter), to a Roman system of finger symbols 
that he extended to one million. (His symbol for one million is 
the clasping of both hands.) 

Most arithmetic manuals of the medieval and Renaissance 
periods included such methods. A typical system, shown in 
Figure 33, is from the first important mathematical book to be 
printed, a 1494 Italian work by Luca Pacioli, a Franciscan friar 
(who later wrote a book on the golden ratio that was illustrated 
by his friend Leonardo da Vinci). The Roman poet Juvenal 
had such a system in mind when he wrote in his Satires: "Happy 
is he indeed who . . . finally numbers his years upon his right 
hand"; that is, happy is he who lives to be 100, the number at 
which the right hand was first used in the symbolism. Note that 
most of the left-hand symbols have right-hand duplicates and 
that even on the same hand certain symbols seem to be the 
same unless there are subtle differences not made clear in the 
crude drawings. St. Jerome wrote in the fourth century that 30 
was associated with marriage, the circle formed by the thumb 



FIGURE 33 
Italian finger symbolism as illustrated by  Luca Pacioli in 1494 

and first finger symbolizing the union of husband and wife; 
similarly, 60 was associated with widowhood, symbolized by 
the breaking of this circle. 

All these old methods of finger symbolism have a 10-base, 
but there is no reason why fingers cannot be used just as easily 
for counting in systems with other bases. Indeed, the fingers are 
peculiarly adapted to the simplest of all systems, the binary, 
since a finger raised or lowered is comparable to a flip-flop cir- 
cuit in modern computers that use binary counting. Frederik 



Pohl, in a magazine article, "How to Count on Your Fingers," 
reprinted in his Digits and Dastards (Ballantine, 1966), sug- 
gests starting with the fists closed, backs of hands up. An ex- 
tended finger is one in the binary system, an unextended finger 
zero. Thus in order to count from one to 11 11 1 1 11 11 (equiva- 
lent to 1,023 in the decimal system) one begins by extending 
the right little finger. To indicate the decimal two, which is 10 
in the binary system, the little finger is retracted and the right 
ring finger raised. Extending both ring and little fingers yields 
11, the decimal three. Figure 34 shows how the two hands rep- 
resent 500 in the binary system. With a little practice one can 
learn to use the fingers for rapid binary counting and even, as 
Pohl explains, for doing binary addition and subtraction. Since 
the propositional calculus of symbolic logic is easily manipu- 
lated in the binary system, the hands can actually be used as a 
computer for solving simple problems in two-valued logic. 

Any binary number consisting entirely of 1's is necessarily 
one less than a power of 2; the number 1,023, for example, indi- 
cated in binary digits by extending all 10 fingers, is 21° - 1. 
This suggested an interesting puzzle to Pohl. Suppose we wish 
to subtract a certain number n from 1,023 (or any lower nurn- 
ber expressed in binary as a string of 1's). Can you think of an 
extremely simple way to perform such a subtraction quickly 
with the fingers? 

Since few people in the Middle Ages and the Renaissance 
learned the multiplication table beyond 5 x 5 or had access to 
an abacus, a variety of simple methods were in use for obtaining 
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the products of numbers from 6 through 10. One common 
method, called "an ancient rule" in a 1492 book, was to use 
the complements of the two numbers with respect to 10. (The 
complement of n would be 10 - n.) To multiply 7 by 8, write 
down their complements, 3 and 2. Either complement, taken 
from the number with which it is not paired, gives 5, the num- 
ber of 10's in the product of 7 and 8. The product of 3 and 2 is 
6. Fifty added to 6 is 56, the final answer. 

The fingers of both hands were often used as a computing 
device for this method. On each hand the fingers are assigned 
numbers from 6 through 10, starting with the little fingers. To 
multiply 7 and 8, touch the 7 finger of either hand to the 8 
finger of the other, as shown at the top of Figure 35. Note that 
the complement of 7 is represented by the three upper fingers 
(those above the touching fingers) of the left hand, and the 
complement of 8 by the two upper fingers of the right hand. 
The five lower fingers represent 5, the number of 10's in the 
answer. To 50 is added the product of the upper fingers, 2 X 3, 
or 6, to obtain 56. This simple method of using fingers to com- 
pute the product of any pair of numbers in the half-decade 6 
through 10 was widely practiced during the Renaissance and is 
said to be used still by peasants in parts of Europe and Russia. 

The method has considerable pedagogical value today in the 
elementary schools, not only because children are intrigued by 
it but also because it ties in neatly with the algebraic multipli- 
cation of binomials. Instead of using complements up to 10, we 
can best represent 7 and 8 as excesses over 5, writing them as 
the binomials (5 + 2) and (5 + 3), then performing the multi- 
plication: 5 + 2 

The first two numbers on the lowest line correspond to the sum 
of the lower fingers multiplied by 10; the 6 corresponds to the 
product of the upper fingers. 



FIGURE 35 
How fingers multiply pairs in the half-decade 6 through 10 

The finger method of multiplying generalizes easily to half- 
decades higher than 10, although there is no evidence it was 
ever used for numbers beyond 10. For all half-decades ending 
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in 5 a slightly different procedure is used. Consider the next- 
higher half-decade, 11 through 15, and suppose we wish to mul- 
tiply 14 and 13. The fingers are assigned numbers from 11 
through 15, and the fingers representing the numbers to be 
multiplied are touched as shown in Figure 36. The seven lower 
fingers are multiplied by 10 to obtain 70. Now, however, in- 
stead of adding the product of the upper fingers, we ignore the 
upper fingers and obtain the product of the two sets of lower 
fingers, 4 x 3, or 12. Adding this to 70 yields 82. The final step 
is to add the constant 100. This gives the final answer, 182. 

There are many ways to explain why this works, but the sim- 
plest is to think in terms of binomial multiplication: 

The 100 on the left is the additive constant, 70 is the sum of the 
lower fingers multiplied by 10, and 12 is the product of the two 
sets of lower fingers. 

For all half-decades ending in 0 we return to the first pro- 
cedure. For 16 through 20 each lower finger has a value of 20 
and the additive constant jumps to 200, as in the multiplication 

FIGURE 36 
Multiplying in the half-decade 11 through 15 



Finger multiplication 6 x 20 = 120 

in the half-decade 17X 19=120+3+200=323 
16 through 20 

of 17 and 19 [see Figure 371. Multiplying the six lower fingers 
by 20 gives 120. The product of the two sets of upper fingers 
yields 3. To 123 we add the constant, 200, to get 323, the final 
answer. The binomial schemata is 10 + 7 

10 + 9 
100 + 70 

If we move the 100 in 160 to the left and the 60 in 63 to the 
middle, we have 200 + 120 + 3. This corresponds to the finger 
computation. The constant is 200, the sum of the lower fingers 
times 20 is 120, and the product of the upper sets of fingers is 3. 

The chart in Figure 38, adapted from Ferd W. McElwain's 
article "Digital Computer-Nonelectronic" (in Mathematics 
Teacher, April 1961), gives the values assigned to the lower 
fingers for each half-decade as well as the additive constant. 
Remember, for each half-decade ending in 0 the first system is 
used, in which the upper fingers play a role. For half-decades 
ending in 5 the second system is used, in which the upper fin- 
gers are ignored. The value assigned to the lower fingers for 
half-decades ending in 5 is 10(d - I ) ,  where d is the number of 
the decade. For half-decades ending in 0 it is 10d. The additive 
constant for half-decades ending in 5 is 1OO(d - 1 )2; for half- 
decades ending in 0 the constant is 100d (d - I). 

The chart extends to all higher half-decades. There are many 
ways to write general formulas that cover the entire procedure. 



Value of Additive 
Decade Half-Decades Lower Fingers Constant 

FIGURE 38 
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Kathan Altshiller Court, in 11/Iathert~atics in Fun and  in Earnest 
(Dial, 1958), gives the follo~\~ing: 

(a + X ) ( Q  + J )  = 2a(x +J) + (a - x ) ( u  -g), 

\vhich call also be xvritten 

(u + x ) ( a  + J )  = a(x  + J )  +xJ+a2 

where s and J are the final digits of the rlunibers to be iliultiplied 
and n can be 5, 10, 15, 20, 25, 30,.. ., the first ilunlbers of each 
half-decade. 

Can this finger-computing system be adapted to the mnltipli- 
cation of nunlbers fi-om different half-decades, say 17 x 6 4 i  The 
answer is yes. The procedure is complicated, unfortunately, 
requiring the assignment of different values to fingers of each 
hand, so that I rllust refer tlle reader to McEltvain's article cited 
above, in ~vhich a method is explained. Of course, one can al- 
l\-ays break tlle larger nunlber into snlaller parts for a series of 
finger rliultiplicatiorls that are then added to get the final result. 
Thus 9 x 13 can be obtained by adding ( 9  x 6 )  to ( 9  x 7). 

There is a philosophical insight in all ofthis. Pure mathemat- 
ics, in one obvious sense, is a construction of the human niind, 
but there also is an astonishing fit betxveen pure mathematics 
and tlle structure of tlle world. The fit is particularly close with 
respect to the behavior of physical objects, such as pebbles and 



fingers, that maintain their identities as units. Thus 2 + 2 = 4 
is both a law of pure arithmetic, independent of the actual 
world, and a law of applied arithmetic. Every now and then a 
cultural anthropologist, overeager to drag science and mathe- 
matics into the folkways, argues that because different tribes 
have calculated with different number systems, mathematical 
laws are entirely cultural, like traffic regulations and baseball 
rules. He forgets that different base systems for the natural 
numbers are no more than different ways of symbolizing and 
talking about the same numbers, and are subject to the same 
arithmetical laws regardless of whether the number manipu- 
lator is a Harvard mathematician or an aborigine adding on his 
fingers. 

The plain fact is that there is no place on the earth or on any 
other planet where two fingers plus two fingers is anything but 
four fingers. The only exception I have come on is in George 
Orwell's 1984, in that terrible torture scene in which Winston 
Smith is finally persuaded that two plus two is five: 

O'Brien held up the fingers of his left hand, with t h  thumb 
concealed. 

"There are five fingers there. Do you see fiue fingers?" 
"Yes." 
And he did see them, for a fleeting instant, before the scenery 

of his mind changed. He saw fiue fingers, and there was no de- 
formity. 

The same possibility had been raised by Dostoevski. "Mathe- 
matical certainty is, after all, something insufferable," says the 
narrator of Notes from Underground. "Twice two makes four 
seems to me simply a piece of insolence. Twice two makes four 
is a pert coxcomb who stands with arms akimbo barring your 
path and spitting. I admit that twice two makes four is' an ex- 
cellent thing, but if we are to give everything its due, twice two 
makes five is sometimes a very charming thing too." 

Charming, perhaps, but applying to no logically possible 
world. I t  is a subjective, self-contradictory delusion, one that 
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can be temporarily induced only by a "collective solipsism" (as 
Orwell called it) in which all truth, including scientific and 
mathematical truth, is defined without reference to the abstract 
laws of logic or to the mathematical patterns of the external 
world. 

A D D E N D U M  

J. A. LINDON, who lives in Addlestone, England, is in my opin- 
ion the greatest living writer in English of humorous verse. 
Since there is almost no market for his work (the one excep- 
tion in the United States is The W o r m  Runner's Digest), most 
of his poems are written to send to friends who, I trust, have the 
sense to preserve them. The following poem, on the first dis- 
covery of arithmetic, was sent to me in 1968 shortly after this 
chapter had appeared in Scientific American. 

FOUNDATIONS OF ARITHMETIC 

One day when Mugg the Missing Link was prowling through the 
woods, 

I n  search of wives and mammoth-meat and other useful goods, 
W h o m  should he see, on pushing out from deep arboreal shade, 
But Ogg the Paleolithic Man, cross-legged in  a glade. 

This Ogg had made a neat array of pebbles on the ground, 
In number they were twenty-one, the most that could be found, 
And Ogg, with one red-hairy hand pressed to his bony brow, 
Was  staring at these pebbles like a ruminating cow. 

Thought Mugg-for he was Primitive-I should be very dull 
T o  lose this opportunity of busting in  his skull; 
M y  club weighs half a hundredweight, he doesn't wear a hat- 
(And here he wondered) Yes, but what the Devil is he at? 



For Ogg was touching pebbles and then prodding at his digits, 
Until the weirdness of it all aflicted Mugg with fidgets: 
"Invented any goodish wheels just recently?" he hollered, 
And doubled up in  merriment, his face raw-beefy coloured. 

Ogg looked at h im in  pity, then he drummed upon his chest, 
His reddish eyes aflame with all a mathematician's zest: 
"I've done a Think!" he bellowed. "Monkey Mugg, I've done a 

Think! 
And I would write it down, but no one's yet invented ink." 

Mugg moved a little closer, and his eyes and mouth were round, 
And stared in  trepidation at those pebbles on the ground. 
Ogg pointed with a nailed red-hairy sausage at the rows 
And said, "Three people's hand-plus-two is hands-plus-feet-plus- 

nose." 

"And this is hand-plus-two of people's three-for-each-by-name, 
So three times hand-plus-two and hand-plus-two times three's the 

same!" 
Mugg scratched his matted hairy head, not knowing what to say. 
Said Ogg, "It's all made clear b y  this rectangular array." 

"Three rows of hand-plus-two and hand-plus-two short rows of 
three 

Are just the same according to which way you look, you see! 
I n  brief, a triple heptad is the same as seven trebles, 
And may  quite possibly be true of other things than pebbles." 
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Mugg viewed it from all angles, then he gave a raucous belch 
And trod on a Batrachian that perished with a squelch. 
He growled, "I  do not uttderstand these arithmetic quirks, 
But maybe we should try it to discover if it works." 

So home they went to get their wives and drag them by the hair, 
For Mugg had feet-plus-hand-plus-four, while Ogg had just a pair; 
But what with all their screeching and their running every way, 
At  first they would not form a neat rectangular array. 

So Ogg he then positioned each by holding of her down 
While  Mugg with mighty club i n  hand, just dinted i n  her crown; 
And when they had them all in  place, like pebbles, they could see 
That three times hand-plus-two i n  wives was hand-plus-two times 

Then Ogg he roared in  high delight, cartwheeling to and fro 
(Carts had not been invented, but he did it, just to show!); 
And Mugg he grimed a shaggy grin and slapped a hairy thigh 
And said, "It's true, as sure as Pterodactyls learned to fly!" 

And then they feasted on their wives in unuxorious zest, 
Except for one whose skull was rather thicker than the rest, 
And she was sent to dig a pit and bury every bone, 
Whi le  Mugg and Ogg went off to find a flat unsullied stone. 

Then Ogg he sharpened up a flint and scratched upon the rock: 
First Arithmetic Theorem-by Ogg the son of Mok. 
He drew his little diagrams, and proved, with QED, 
That Three times hand-plus-two of x is hand-plus-two times three. 



But Mugg the Missing Link grew bored, and left him there alone, 
Still scratching with his silly flint upon his silly stone; 
And belching, plunged back in the woods on feet toes simple fives, 
In search of wives and mammoth-meat, particularly wives! 

A N S W E R S  

THE ONLY SOLUTION to the Venusian ~roblem is 12 + 12 = 101 
in a ternary (base-3) notation, therefore a Venusian has three 
fingers on each hand. (The Venusian sum is equivalent to 5 + 5 
= 10 in our decimal notation.) Raymond DeMers wrote to say 
that if Venusians had three fingers on each hand they would be 
more likely to use a base-6 notation. He   refers to believe that 
Venusians have a total of three fingers, one on one hand, two on 
the other. 

Cameron D. Anderson, of Windsor, Ontario, Canada, and 
Grenville Turner, of Sheffield University, in England, wrote to 
say that perhaps the Venusian symbols were for a multiplica- 
tion problem rather than addition. With this interpretation 
there is an infinite number of solutions. Readers may enjoy 
proving that the solution with the smallest base is 13 x 13 = 
171 in a base-8 notation. 

The second question assumed that the ten extended fingers of 
both hands represented the ten 1's of a binary number equiva- 
lent to the decimal 21° - 1, or 1,023, and asked for a simple 
method of using the fingers to subtract from such a number a 
given smaller number n. The answer, supplied by Frederik 
Pohl in his article cited earlier, is simply to express n as a bi- 
nary number, using the fingers in the manner explained. Now 
bend down every extended finger and extend every bent-down 
finger-the equivalent of changing every 1 to 0 and every 0 to 
1. The new number is the desired binary answer. 
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Mobius Bands 

A burleycue dancer, a pip 
Named Virginia, could peel in a zip; 

But she read science fiction 
and died of constriction 

Attempting a Mobius strip. 
-CYRIL KORNBLUTH 

A SHEET OF PAPER has two sides and a single edge that runs all 
the way around it in the form of a closed curve. Can a sheet of 
paper have a single edge and only one side, so that an ant can 
crawl from any spot on the paper to any other spot without ever 
crossing an edge? It is hard to believe, but apparently no one 
noticed the existence of such one-sided surfaces until a band 
with a half-twist was described by August Ferdinand Mobius, 
a German mathematician and astronomer who died in 1868 (in 
his Werke, Vol. 2, 1858). Since then the Mobius strip, as this 
surface came to be called, has become the best known of the 
many toys of topology, that flourishing branch of modern math- 
ematics concerned with properties that remain invariant when 
a structure is given "continuous deformation." 

The deformation that preserves topological properties, such as 
the one-sidedness of Mobius strips, is often explained by asking 
the reader to imagine that a structure is made of soft rubber 
that can be molded into any desired shape provided it is not 
punctured or a part of it removed and stuck back at some other 
spot. This is a common misconception. The kind of deformation 
that preserves topological properties must be defined in a much 



more technical way, involving continuous mapping from point 
to point. I t  is quite possible for two structures to be topologically 
equivalent ("homeomorphic," as topologists like to say) even 
though one cannot in our three-dimensional space transform 
one to the other by deforming it like a rubber sheet. A simple 
example is provided by two rubber Mobius bands that are mir- 
ror images of each other because they are twisted in opposite 
directions. I t  is impossible to deform one to the other by stretch- 
ing and twisting, and yet they are topologically identical. The 
same is true of a Mobius strip and a strip with three or any 
other odd number of half-twists. All strips with odd half-twists, 
and their mirror images, are homeomorphic even though none 
can be changed to another by rubber-sheet deformation. The 
same is true of all strips (and their mirror images) with even 
half-twists. Such strips are topologically distinct from those 
with odd half-twists but all of them are homeomorphic with one 
another [see Figure 391. 

More strictly, they are homeomorphic in what topologists call 
an intrinsic sense, that is, a sense that considers only the surface 
itself and not the space in which it may be embedded. I t  is be- 

FIGURE 39 
Strips with odd (left) and even (right) 

numbers of half-twists 
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cause our model of a Mobius strip is embedded in 3-space that 
it cannot be deformed to its mirror image or to a band with 
three half-twists. If we could put a paper Mobius band into 4- 
space, it would be possible to deform it and drop it back into 3- 
space as a band with any odd number of half-twists of either 
handedness. Similarly, a band with no twists (topologically 
equivalent to a cylinder or to a sheet of paper with a hole in it) 
could be taken into 4-space, twisted, and dropped back into our 
space with any even number of half-twists of either handedness. 

Instead of thinking of the strips as manipulated in 4-space, 
think of them as zero-thick surfaces in 3-space capable of self- 
intersection. With a little imagination it is easy to see how a 
twisted band can be changed, by passing it through itself, to any 
of its topologically equivalent forms. For instance, a "ghost" 
Mijbius strip can be passed through itself to form its mirror 
image or any surface with an odd number of twists of either 
handedness. 

When a twisted strip is embedded in 3-space, the strip ac- 
quires extrinsic topological properties it does not have when it 
is considered apart from its embedding space. Only in this ex- 
trinsic sense can one say a Mobius band is topologically distinct 
from, say, a strip with three half-twists. 

The most whimsical intrinsic topological property of the 
Mobius strip (or any of its intrinsically identical forms) is that 
when it is cut in half along a line down its middle, the result is 
not two bands, as one might expect, but a single larger band. As 
an anonymous limerick has it: 

A mathematician confided 
That a Mobius strip is one-sided. 

You'll get quite a laugh 
If you cut it in half, 

For it stays in one piece when divided. 

Surprisingly, the new band produced by this "bisection" is two- 
sided and two-edged. Because the model is embedded in 3-space 
i t  will have 2n + 2 half-twists, where n is the number of odd 



half-twists in the original band. If n is 1, the new strip has four 
half-twists, an even number, so that it is intrinsically homeo- 
morphic with a cylinder. If n is 3, the final strip has eight half- 
twists and is tied in a simple overhand knot. 

A band with an even number of half-twists (0, 2, 4, . . .) 
always produces two separate bands when it is cut down the 
middle, each identical with the original except for being nar- 
rower. In  3-space each has n half-twists and the two bands are 
linked n/2 times. Thus when n is 2, bisection produces two 
bands, each with two half-twists, and they are linked together 
like two links of a chain. If n is 4, one band is looped twice 
around the other. When n is 2 you can cut the band to make 
two linked rings, break one and toss it aside, cut the remaining 
one to get two still thinner linked rings, break one and toss it 
aside, and continue (in theory) as long as you like. 

In  my Dover paperback Mathematics, Magic, and Mystery, 
I explain how magicians have exploited these properties in an 
old cloth-tearing trick called "the Afghan bands." Stephen Barr 
suggests another novel way of demonstrating the same proper- 
ties. He paints a center line around a large, heavy paper strip 
with a strong water soIution of potassium nitrate, then hangs 
the band on a nail so that only half of the band's width is sup- 
ported by the nail. When the painted line is touched at the bot- 
tom with the burning end of a cigarette, the line burns quickly 
upward on both sides until the flames meet at the top, then 
half of the strip drops to produce either one large strip, two 
linked strips, or a knotted strip depending on whether the origi- 
nal was given one, two, or three half-twists. 

Another unexpected result occurs when a strip with odd half- 
twists is "trisected," that is, if the cut is begun a third of the 
way from one edge. The cutting takes you twice around the 
band before you return to the starting point. The result is a 
band identical with the original except for being narrower (it 
is the central third of the original), linked with a second band, 
twice as long, that is identical with (but narrower than) the 
band that would have been produced by cutting the original in 
half. When n is 1 (the Miibius strip), trisection produces a 
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small Mobius band linked to a longer two-sided band with four 
half-twists [see Figure 401. 

A fascinating puzzle (proposed independently by two read- 
ers, Elmer L. Munger and Steven R. Woodbury) now presents 
itself. After producing the two interlocked strips by trisecting a 
Mobius band, see if you can manipulate them until they nest 
together to form the triple-thick Mobius band shown in Figure 
40. If you succeed, you will find a curious structure in which 
two outer "strips" are separated all the way around by a Mo- 

FIGURE 40 

Trisected strip ( 1 )  makes two linked strips 
that can form a triple-thick band (3) 



bius strip "between" them. One would suppose, therefore, that 
the Mobius strip is surrounded by two separate bands, but of 
course you know this is not the case. The same structure can be 
made by putting three identical strips together, holding them as 
one, giving them a half-twist, and then joining the three pairs 
of corresponding edges. If this triple-thick band is painted red 
on its "outside," you will find it possible to interchange the out- 
side parts so that the red-painted side of the larger band goes 
into the interior and the triple-thick band is colorless on its 
"outside." It is amusing to form such bands, of m thicknesses 
and n half-twists, and then to work out formulas for what re- 
sults when such bands are bisected and trisected. 

The Mobius strip has many strange intrinsic properties. I t  is 
what topologists call "nonorientable." Imagine the strip to be a 
true surface of zero thickness. Embedded in this 2-space are 
flat creatures that are mirror asymmetric (not identical with 
their mirror images). If such a creature moves once around the 
band to rejoin his fellows, he will have changed his parity and 
will have become a mirror reflection of his former self. (Cos- 
mologists have devised analogous models of twisted 3-space in 
which it would be possible for an astronaut to make a circuit 
around the cosmos and return with his heart on the other side.) 
Remember, you must assume that the flat creatures are "in" the 
zero-thick surface, not "on" it. 

All nonorientable surfaces must contain at least one Mobius 
surface. Stated differently, from any nonorientable surface one 
can always cut a Mobius surface. Topologists have found many 
strange kinds of nonorientable surfaces, such as the Klein bottle, 
the projective plane, and Boy's surface (discovered by the Ger- 
man mathematician Werner Boy), all of them closed and edge- 
less like the surface of a sphere. The Klein bottle can be cut in 
half to produce two Mobius strips, as explained in Chapter 2 
of my Sixth Book of Mathematical Games from Scientific Amer- 
ican. The projective plane becomes a Mobius surface if a hole 
is made in it. 

All nonorientable surfaces are one-sided in 3-space and all 
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orientable surfaces (in which flat asymmetric creatures are un- 
able to reverse their handedness) are two-sided in 3-space. 
Sidedness is not an intrinsic topological property like orientabil- 
ity. I t  is only in our space that we can speak of a two-dimen- 
sional surface as having one or two sides, just as we can only 
speak of a closed one-dimensional line as having an outside and 
inside when it is embedded in a plane. 

Another intrinsic property of the Mobius strip has to do with 
graph theory. On the plane, or on any band with even half- 
twists, four is the largest number of points that can be joined 
by nonintersecting lines that connect every pair of points [see 
Figure 411. It is not hard to prove that this cannot be done with 
five points. On a Mobius surface, however, a maximum of six 
points can be mutually joined by nonintersecting lines. Con- 
sider six spots on an opened-out strip [see Figure 411. Assume 
that the top and bottom ends of this strip are joined after the 
strip is given one half-twist or any odd number of half-twists. 
Can you connect every pair of points with a line without having 
two lines intersect or without cheating by passing a line 
through a spot? Here again, assume that the strip has no thick- 
ness. Each line must be thought of as "in" the paper like an ink 
line that has soaked through to the other side. 

The Mobius strip has practical uses. In 1923 Lee De Forest 
obtained a United States patent for a Mobius filmstrip that rec- 
ords sound on both "sides." More recently the same idea has 
been applied to tape recorders so that the twisted tape runs 
twice as long as it would otherwise. Several patents have been 
granted for Mijbius strip conveyor belts designed to wear equally 
on both sides. In 1949 0. H. Harris obtained patent No. 
2,479,929 on a Mobius abrasive belt. B. F. Goodrich Company 
secured a similar patent (No. 2,784,834) in 1957. In 1963 J. W. 
Jacobs obtained patent No. 3,302,795 on a self-cleaning filter 
belt for dry-cleaning machines. It makes possible easy washing 
of dirt from both "sides" as the twisted belt goes around. 

In  1963 Richard L. Davis, a Sandia Corporation physicist in 
Albuquerque, invented a Mtibius strip nonreactive resistor. 



FIGURE 41 
Points on plane (left) or strip (right) 

Bonding metal foil to both sides of a nonconductive ribbon and 
then forming a triple-thick Mobius band, Davis found that 
when electric pulses flowed in both directions around the foil 
(passing through themselves), the strip acquired all kinds of 
desirable electronic properties. (See Time, September 25, 1964, 
and Electronics Illustrated, November 1969, pages 76 f.) 

Modern sculptors have based numerous abstract works on the 
Mobius surface. The Srnithsonian Institution's new Museum 
of History and Technology in Washington, D.C., has an eight- 
foot-high steel Mobius band that rotates slowly on a pedestal 
in front of the entrance. Max Bill, a Swiss sculptor, has based 
dozens of abstract works on the Mobius strip. [See Figure 42.1 

Graphic artists have used the strip in advertising and works 
of art. Two uses of the Mobius band by the Dutch artist Maurits 
C. Escher are reproduced in Figures 43 and 44. In  1967 Brazil 
honored a mathematical congress by issuing a commemorative 
stamp bearing a picture of the Mobius strip. In  1969 a Belgian 
stamp featured a Mobius band flattened to a triangle. (Both 



FIGURE 42 
Continuous Surface 

in Form of a Column (1953), 
Albright-Knox Art Gallery, Buffalo 

FIGURE 
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FIGURE 44 
"Mobius Strip I," a 1961 wood engraving by Maurits C. Escher, 

shows a bisected Mobius band. 
I t  is a single band in the form of three fish, 

each biting the tail of the fish in front. 

stamps are shown in Figure 45.) A triangular, flattened Mijbius 
strip was the official symbol of Expo '74, the 1974 World Ex- 
position in Spokane, Washington. The New Yorker's cover, 
April 5, 1976, showed a Mobius band around which about thirty 
businessmen are walking in both directions. 
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The Mobius surface has played a central role in numerous 
science-fiction stories, from my "No-Sided Professor" to Arthur 
C. Clarke's "The Wall of Darkness" (Super Science Stories, 
July 1949). Many friends have sent me Christmas cards with 
messages, such as "Endless joy," printed on Mobius strips. It is 
curious that if you keep pulling such a printed strip through 
your fingers, the endless message is always right side up al- 
though at any spot on the strip the printing at the back is up- 
side down. When I was an editor of Humpty Dumptyys Maga- 
zine, I once based an activity feature ("Watch the Thanksgiving 
Day Parade," November 1955, pages 82-84) on this property. 

Writers who type rapidly and are annoyed by having to put 
new sheets into the machine have been known to adopt the ex- 
pedient of typing on paper that comes in rolls, like paper tow- 
els. If they used a long loop of paper, it could be twisted to per- 
mit typing on both sides. Waldo R. Tobler once suggested 
mapping the world onto a Mobius strip so that the edge coin- 
cided with the poles, and the lines of latitude and longitude 
were symmetrically spaced. If it were done properly, you could 
puncture the map at any spot and the point on the other "side" 
would be the spherical antipode. 

Hexaflexagons have an odd number of half-twists and are 
therefore Mobius surfaces. For an introduction to the interesting 

FIGURE 45 

Brazilian and Belgian stamps 
that display Mobius bands 



topology of "crossed" Mobius bands, see Problem 15 of the next 
chapter. On the problem of the minimum-length strip that can 
be folded and joined to rnake a Mobius surface, see my Sixth 
Book of Mathematical Games from Scientific American, 
Chapter 6. Acrobatic skiers now perform a trick called the 
"Mobius flip" in which they make a twist while somersaulting 
through the air. 

A group of French writers and mathematicians who publish 
outlandish experiments in French word play under the group 
name of OuLiPo, use Mobius strips for transforming poems. For 
example, a quatrain on one side of a strip may have the rhyme 
scheme abab, and a quatrain on the other side may rhyme cdcd. 
Twisted into a Mobius band, a new poem, acbd-acbd is created. 
(See the two chapters on the OuLiPo in my Penrose Tiles to 
Trapdoor Ciphers (Freeman, 1989).) 

In  recent years even nonmathematical writers seem to have 
become enamored of the Mobius surface as a symbol of endless- 
ness. There is a poem by Charles Olson called "The Moebius 
Strip," and Carol Berg6's A Couple Called Moebius: Eleven 
Sensual Short Stories (Bobbs-Merrill, 1972) displays a huge 
Mobius strip on the jacket and smaller strips at the top of each 
story. "When a man and woman join as lovers," says the book's 
flyleaf, "there is a potential infinity of relationships that, like 
the Moebius strip, has no beginning and no end: only a contin- 
uum. . . . There is wisdom and honesty in these stories: 
enough to make one feel a kinship with these people-an ac- 
quaintance possibly formed somewhere along the Moebius strip 
of one's own life." 

I t  is hard to see how a twist in an endless loop adds anything 
to the metaphor that a simple untwisted band or an old-fash- 
ioned circle wouldn't provide. All the twist does is keep bring- 
ing one back to previously visited spots in alternate left- and 
right-handed forms, but how this applies to the filmstrip of 
one's life is not clear. 

The first story, more accurately the start of a story, in John 
Barth's Lost i n  the Funhouse (Doubleday, 1968) is designed to 
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be read on an actual Mobius surface. The reader is told to cut 
the page along the dotted line, then twist and paste to make a 
Mobius band on which he can read the endless "Frame-Tale": 
"Once Upon A Time There Was A Story That Began Once 
Upon A Time There Was A Story That Began . . ." 

This is the old children's tale that has an infinite beginning 
with no middle or end. Once I wrote the following middleless 
metapoem that has an infinite beginning and an infinite end: 

O m  day 
A mad metapoet 
Wi th  little to say 
Wrote a mad metapoem 
That started: 
" O m  day 
A mad metapoet 
With  little to say 
Wrote a mad metapoem 
That started: 
' "One day 

Sort of close," ' 
Were the words that the poet 
Finally chose 
To bring his mad poem 
To  some 
Sort of close," 
Were the words that the poet 
Finally chose 
To bring his mad poem 
To  some 
Sort of close. 

Unfortunately I have not yet found an appropriate topological 
surface on which to print it. 



ANSWERS 

ONE WAY to solve the Mijbius strip puzzle is shown in Figure 
46. Assume that the strip is given a half-twist before the ends 
are joined; points a, b, c, d, e at the bottom will then meet cor- 
responding points at the top. The surface must be thought of as 
having zero thickness, its lines being "in" the strip, not "on" it. 

e a 

d b 

c C 

b d 
a 

e 

FIGURE 46 
Answer to Mobius strip problem 

FIGURE 47 

The complement of this graph is a map that requires six colors 
if each region differs in color from each of its neighbors. Fig- 
ure 47 is another symmetrical solution that was sent by many 
readers. 
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Ridiculous Questions 

NONE OF the following short problems requires a knowledge of 
advanced mathematics. Most of them have unexpected or 
L L ~ a t ~ h "  answers, and are not intended to be taken seriously. 

1. In a certain African village there live 800 women. Three 
percent of them are wearing one earring. Of the other 97 per- 
cent, half are wearing two earrings, half are wearing none. 
How many earrings all together are being worn by the women? 

2. Each face of a convex polyhedron can serve as a base 
when the solid is placed on a horizontal plane. The center of 
gravity of a regular polyhedron is at the center, therefore it is 
stable on any face. Irregular polyhedrons are easily constructed 
that are unstable on certain faces; that is, when placed on a 
table with an unstable face as the base, they topple over. Is it 
possible to make a model of an irregular convex polyhedron 
that is unstable on every face? 

3. What is the missing number in the following sequence: 
10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 24, 31, 100, -, 10000. 
(Hint: The missing number is in ternary notation.) 

4. Among the assertions made in this problem there are three 
errors. What are they? 



5. A logician with some time to kill in a small town decided 
to get a haircut. The town had only two barbers, each with his 
own shop. The logician glanced into one shop and saw that it 
was extremely untidy. The barber needed a shave, his clothes 
were unkempt, his hair was badly cut. The other shop was ex- 
tremely neat. The barber was freshly shaved and spotlessly 
dressed, his hair neatly trimmed. The logician returned to the 
first shop for his haircut. Why? 

6. A single cell is added to a ticktacktoe board [see Figure 
481. If the game is played in the usual manner, the first player 
easily obtains three in a row by playing first as shown. If there 
were no extra cell, the second player could stop a win only by 
taking the center. But now the first player can move as shown, 
winning obviously on his next move. 

FIGURE 48 
A first-player win 

Let us modify the game by a new proviso. A player can win 
on the bottom row only by taking all four cells. Can the first 
player still force a win? 

7. A secretary types four letters to four people and addresses 
the four envelopes. If she inserts the letters at random, each in 
a different envelope, what is the probability that exactly three 
letters will go into the right envelopes? 

8. Consider these three points: the center of a regular tetra- 
hedron and any two of its corner points. The three points are 
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coplanar (lie on the same plane). Is this also true of all irregu- 
lar tetrahedrons? 

9. Solve the crossword puzzle in Figure 49 with the help of 
these clues: 

HORIZONTAL 

1. Norman Mailer has two. 
2. Is indebted. 
3. Chicago vehicles. 
4. Relaxation. 

VERTICAL 

1. Skin blemish. 
5. Works in the dark. 
6. Character in Wind in 

the Willows. 
7 .  Famous white Dixieland 

trombonist. 

FIGURE 49 
Crossword puzzle 

10. Three points are selected at random on a sphere's sur- 
face. What is the probability that all three lie on the same hem- 
isphere? It is assumed that the great circle, bordering a hemi- 
sphere, is part of the hemisphere. 

11. If you took three apples from a basket that held 13 ap- 
ples, how many apples would you have? 

12. Two tangents to a circle are drawn [see Figure 501 from 
a point, C. Tangent line segments YC and XC are necessarily 
equal. Each has a length of 10 units. Point P, on the circle's cir- 
cumference, is randomly chosen between X and Y. Line AB is 
then drawn tangent to the circle at P. What length is the perim- 
eter of triangle ABC? 



FIGURE 51 
A topological question 

FIGURE 52 
Cube-dissection puzzle 

13. If nine thousand nine hundred and nine dollars is prop- 
erly written $9,909, how should twelve thousand twelve hun- 
dred and twelve dollars be written? 

14. A chemist discovered that a certain chemical reaction 
took 80 minutes when he wore a jacket. When he was not wear- 
ing a jacket, the same reaction always took an hour and 20 min- 
utes. Can you explain? 

15. Each of the two paper structures shown in Figure 51 con- 
sists of a horizontal band attached to a vertical band of the 
same length and width. The structures are identical except that 
the second has a half-twist in its vertical band. If the first is cut 
along the broken lines, the surprising result is the large square 
band shown as a border of the illustration. 

What results if the second structure is similarly cut along 
the broken lines? 

16. An equilateral triangle and a regular hexagon have pe- 
rimeters of the same length. If the triangle has an area of two 
square units, what is the area of the hexagon? 

17. Can a 6 X 6 x 6 cube be made with 27 bricks that are 
each 1 x 2 x 4 units [see Figure 521 ? 

18. A customer in a restaurant found a dead fly in his coffee. 
He sent the waiter back for a fresh cup. After taking one sip he 
shouted, "This is the same cup of coffee I had before!" How did 
he know? 



Ridiculous Questions 141 

19. A metal sheet has the shape of a two-foot square with 
semicircles on opposite sides [see Figure 531. If a disk with a 
diameter of two feet is removed from the center as shown, what 
is the area of the remaining metal? 

20. "I guarantee," said the pet-shop salesman, "that this par- 
rot will repeat every word it hears." A customer bought the par- 
rot but found it would not speak a single word. Nevertheless, 
the salesman told the truth. Explain. 

21. From one corner of a square extend two lines that exactly 
trisect the square's area [see Figure 541 .  Into what ratios do 
these trisecting lines cut the two sides of the square? 

22. A 10-foot piece of cylindrical iron pipe has an interior 
diameter of four inches. If a steel sphere three inches in diam- 
eter is inserted into the pipe at end A and a steel sphere two 
inches in diameter is inserted at end B, is it possible, with the 
help of a rod, to push each sphere through the entire length of 
pipe so that it emerges at the other end? 

23. Give at least three ways a barometer can be used to de- 
termine the height of a tall building. 

24. How can you make a cube with five paper matches? No 
bending or splitting of matches is allowed. 

25. Which situation is more likely after four bridge hands 
have been dealt: you and your partner hold all the clubs or you 
and your partner have no clubs? 

2 

FIGURE 53 
Hole-in-metal problem 

FIGURE 54 

Trisecting the square 



26. This old-timer still confuses almost everyone who hears 
it for the first time. Smith gave a hotel clerk $15 for his room 
for the night. When the clerk discovered that he had over- 
charged by $5, he sent a bellboy to Smith's room with five $1 
bills. The dishonest bellboy gave only three to Smith, keeping 
the other two for himself. Smith has now paid $12 for his room. 
The bellboy has acquired $2. This accounts for $14. Where is 
the missing dollar? 

A N S W E R S  

I. Among the 97 percent of the women, if half wear two 
earrings and half none, this is the same as if each wore one. As- 
suming, then, that each of the 800 women is wearing one ear- 
ring, there are 800 earrings in all. 

2. No. If a convex polyhedron were unstable on every face, 
a perpetual motion machine could be built. Each time the solid 
toppled over to a new base it would be unstable and would top- 
ple over again. 

3. Each number is 16 in a number system with a different 
base, starting with base-16 and continuing with bases in de- 
scending order, ending with base-2. The missing number, 16 in 
the ternary system, is 121. 

4. Only equations b and e are false, therefore the statement 
that there are three errors is false. This is the third error. 

5. Each barber must have cut the other's hair. The logician 
picked the barber who had given his rival the better haircut. 

6. Assume the cells are numbered from 1 through 10, taking 
them left to right and top to bottom. The first player can win 
only by taking either cell 2 or 6 on his first move. I leave it to 
the reader to work out the first player's strategy for all re- 
sponses. 

7. Zero. If three letters match the envelopes, so will the 
fourth. 

8. Yes. Any three points in space are coplanar. 
9. The solution to the crossword puzzle is shown in Figure 

55. 
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FIGURE 55 
Answer to crossword puzzle 

10. The probability is certainty. Any three points on a 
sphere are on a hemisphere. 

11. Three apples. 
12. The triangle's perimeter is 20 units. Lines tangent to a 

circle from an exterior point are equal, therefore Y A  = AP and 
BP = XB. Since AP + BP is a side of triangle ABC, it is easy to 
see that the triangle's perimeter is 10 + 10 = 20. This is one of 
those curious problems that can be solved in a different way on 
the assumption that they have answers. Since P can be any- 
where on the circle from X to Y, we move P to a limit (either Y 
or X). In  both cases one side of triangle ABC shrinks to zero as 
side AB expands to 10, producing a degenerate straight-line 
"triangle" with sides of 10, 10, and 0 and a perimeter of 20. 
(Thanks to Philip C. Smith, Jr.) 

13. $13,212. 
14. Eighty minutes is the same as one hour and 20 minutes. 
15. Cutting the second structure has the same result as cut- 

ting the first. Indeed, the result is the same large square re- 
gardless of the number of twists in the vertical band! For an 
additional surprise, see what happens when the untwisted band 
of the second structure is bisected and the twisted band is tri- 
sected. 

16. Three square units [see Figure 5 61. 

Triangle-hexagon soluf ion 



17. No. Think of the order-6 cube as made up of 27 cubes 
with sides of two units and alternately colored black and white. 
Since 27 is an odd number there will be 13 cubes of one color 
and 14 of another. No matter how a brick is placed within this 
cube, half of its unit cubes will be black and half white, so that 
if the cube can be formed, it must contain as many black unit 
cubes as white. This contradicts the fact that the large cube has 
more unit cubes of one color than of the other, therefore there 
is no way to build the order-6 cube with the 27 bricks. 

18. The customer had sugared his coffee before he found the 
dead fly. 

19. The two semicircles together form a circle that fits the 
hole. The remaining metal therefore has a total area of four 
square feet. 

20. The parrot was deaf. 
21. The trisecting lines also trisect each side of the square. 

As Piet Hein, who sent me this problem, points out, this is easily 
seen by dividing any rectangle into halves by drawing the main 
diagonal from the corner where the trisecting lines originate. 
Each half of the rectangle obviously must be divided by a tri- 
secting line into two triangles such that the smaller is half the 
area of the larger. Since the two triangles share a common alti- 
tude, this is done by making the base of the smaller triangle 
half the base of the larger. 

22. Yes, if the two spheres are pushed through the tube at 
different times. 

23. Here are five: 

(1) Lower the barometer by a string from the roof to the 
street, pull it up, and measure the string. 

(2) Same as above except instead of pulling the barom- 
eter up, let it swing like a pendulum and calculate the length 
of the string by the pendulum's frequency. (Thanks to Dick 
Akers for this one.) 

(3) Drop the barometer off the roof, note the time it takes 
to fall, and compute the distance from the formula for falling 
bodies. 
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(4) On a sunny day, find the ratio of the barometer's 
height to the length of its shadow and apply this ratio to the 
length of the building's shadow. 

(5) Find the superintendent and offer to give him the ba- 
rometer if he will tell you the height of the building. 

Solution (1) is quite old ( I  heard it from my father when I 
was a boy), but the most complete discussion of the problem, 
with all solutions except (2), is in Alexander Calandra's book 
The Teaching of Elementary Science and Mathematics (Ball- 
win, Mo. : ACCE Reporter, 1969). Calandra's earlier discussion 
of the problem, in the teacher's edition of Current Science, was 
the basis of a New York Times story, March 8,1964, page 56. 

24. If "cube" is taken in the numerical sense, the five 
matches can be used to form 1 or 27, or VIII, or I with an ex- 
ponent of 3. If the bottoms of the matches are straight, the ar- 
rangement shown in Figure 57 produces a tiny cube at the 
center. 

FIGURE 57 
Five-match cube 

25. The probabilities are the same. If you and your partner 
have no clubs, all the clubs will have been dealt to the other two 
players. 

26. Adding the bellboy's $2 to the $12 Smith paid for his 
room produces a meaningless sum. Smith is out $12, of which 
the clerk has $10 and the bellboy $2. Smith got back $3, which, 
added to the $12 held by the clerk and the bellboy, accounts for 
the full amount of $15. 



C H A P T E R  1 1  

Poly heus  and Poly a boloes 

THE USUAL jigsaw puzzle is almost devoid of mathematical in- 
terest: the pieces are fitted together by trial and error, and if 
one has enough determination and patience, the pattern is even- 
tually completed. But if the pieces have simple polygonal 
shapes, the task of fitting them into a predetermined figure be- 
comes one of combinatorial geometry, offering scope for con- 
siderable mathematical ingenuity and sometimes raising ques- 
tions that are not mathematically trivial. If a set of polygonal 
pieces is obtained by applying a simple combinatorial rule, it 
takes on a quality of elegance, and the task of exploring the set's 
combinatorial properties can be as fascinating as it is time- 
devouring. 

Among recreational mathematics enthusiasts the most popu- 
lar of such sophisticated jigsaws are the polyominoes. These 
are pieces formed by joining n unit squares in all possible ways. 
Many articles have been devoted to them, and Solomon W. 
Golomb, professor of engineering and mathematics at the Uni- 
versity of Southern California, has written a book about them, 
Polyorninoes. By joining equilateral triangles along their edges 
one obtains another well-explored family of shapes known as 
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polyiamonds. The hexiamonds (polyiamonds formed with six 
equilateral triangles) are discussed in my Sixth Book of Mathe- 
matical Games from Scientific American. 

Many readers who enjoy working with polyominoes and 
polyiamonds have written to propose other ways of obtaining a 
basic set of polygons that can be used for similar recreations. In 
this chapter I shall discuss the two sets that have prompted the 
most correspondence. Very little has been published about 
either of them. 

Since there are only three regular polygons that tile the plane 
-squares, equilateral triangles, and regular hexagons--one 
thinks at once of forming pieces by joining congruent hexa- 
gons. There is only one way to join two hexagons; there are 
three ways to join three hexagons and seven ways to join four 
of them. Because these shapes resemble the structural diagrams 
of benzene-ring compounds, two readers, Eleanor Schwartz and 
Gerald J. Cloutier, have suggested calling them "benzenes." 
Other names have been proposed, but it seems to me that the 
best is "polyhexes," the name adopted by David Klarner, who 
was one of the first to investigate them. The 7 tetrahexes, with 
names culled from the letters of many different readers, are 
shown in Figure 58. The next-largest set, the pentahex, has 22 

WAVE 

WORM BAR 

FIGURE 58 
The seven distinct tetrahexes 



distinct shapes-a bit too unwieldy for recreational uses. There 
are 82 hexahexes, 333 heptahexes, and 1,&8 octahexes. (Be- 
cause pieces may be turned over, mirror-image forms are not 
considered distinct.) As with polyominoes and polyiamonds, no 
formula is known by which the number of polyhexes of a given 
order can be determined. 

The reader is urged to cut a set of tetrahexes from cardboard. 
(If you have a hexagonally tiled floor, you could make the 
pieces correspond in cell size to the tiles so that the floor can be 
used as a background for working on tetrahex problems.) Of the 
eight symmetrical patterns in Figure 59, all but one can be 
formed from a full set of the seven tetrahexes. Many readers 
proposed the "rhombus," the "triangle," and the "tower." The 
"ink blot" and the "grapes" are from Richard A. Horvitz, the 
"annulus" from Cloutier, the "pyramid" from Klarner, and 
the "rug" from both T. Marlow and Klarner. Can you identify 
the impossible figure? No simple proof of its impossibility has 
yet been found. (The tower is not the impossible one, although 
it is difficult and has a unique solution except for a trivial re- 
versal of two pieces that together form a mirror-symmetrical 
shape.) All seven pieces must be used, and solutions obtainable 
by reflection of the entire figure are not, of course, counted as 
different. 

Many striking symmetrical shapes can be formed with the 
22 pentahexes [see Figure 601. The "rug" (which can be bi- 
sected, the two parts being placed end to end to form a longer, 
narrower rug) was discovered by Robert G. Klarner (father of 
David Klarner). The other patterns are from Christoph M. 
Hoffman of Hamburg, Germany. Note that the two rhombuses 
can be put together differently to make a 5-by-22 rhombus. 
(This bisected rhombus and the rhombus cut into two triangles 
were solved in different ways by Marlow.) Neither the tetra- 
hexes nor the pentahexes have the required area to form a hexa- 
gon, but both Marlow and Miss Schwartz discovered that a 
hexagon of side 4 could be made by combining the seven tetra- 
hexes with the three trihexes. 

Turning to polygonal units that are not regular, we find that 



Polyhexes and Polyaboloes 149 

RHOMBUS 
V V V  

A 
ANNULUS s s TRIANGLE 

w 
TOWER 

INK BLOT 

RUG PYRAMID 

FIGURE 59 
Patterns to be formed with tetrahexes, all but one of them possible 



RHOMBUSES TRIANGLES 

POPCORN BALLS 

RUG 

CHRISTMAS TREE CRESCENT MOON 

FIGURE 60 
Some patterns to be formed with pentahexes 
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the simplest are the isosceles right triangles. They can be joined 
either at their sides or along their hypotenuses. We shall 
speak of the sides as s edges and the hypotenuses as h edges. This 
family of pieces was first discussed in print by Thomas H. 
O'Beirne in New Scientist, December 21, 1961, in a column on 
recreational mathematics that he then contributed regularly 
to the magazine. The pieces had been suggested to him by S. J. 
Collins of Bristol, England, who gave the name "tetraboloes" to 
the order-4 set because the diabolo, a juggling toy, has two isos- 
celes right triangles in its cross section. This implies the generic 
name "polyaboloes." There are 3 diaboloes, 4 triaboloes, 14 tet- 
raboloes, 30 pentaboloes, and 107 hexaboloes. 

The set of 14 tetraboloes in Figure 61 has a total area of 28 
s-unit squares or 14 h-unit squares. Since neither 14 nor 28 is a 
square number there is no possibility of forming a square with 
the complete set. A 2s-by-2s square has the right area to be 
formed with two tetraboloes, but this proves to be impossible. 
There are three squares that can be formed with subsets of the 

E F G H 

"EVEN" TETRABOLOES 

"ODD" TETRABOLOES 
FIGURE 61 

The 14 distinct tetraboloes 



MATHEMATICAL MAGIC SHOW 

FIGURE 62 
Squares with tetrabolo solutions 

complete set [see Figure 621. If the reader will make a set of card- 
board tetraboloes, he will find that it can be a pleasant task to dis- 
cover patterns for these three squares. The smallest square has 
only two solutions and the number of solutions for the two larg- 
er ones is not known. 

Figure 63 shows all the rectangles with s-edge sides that have 
the proper area to be formed with the full set or a subset of the 
14 pieces; Figure 64 shows all such rectangles with h-edge sides 
(h greater than 1). Note that the largest-area rectangle of each 
type, calling for all 14 pieces, is said to be impossible. I shall 
give a remarkable proof of this that was discovered by O'Beirne 
and explained in his column of January 18, 1962. 

Most impossibility proofs for polyomino figures depend on a 
checkerboard coloring of the figure, but in this case such a col- 
oring is no help. O'Beirne's proof focuses on the number of h 
edges possessed by the full set of pieces. If each piece is placed 
so that the sides of its unit triangles are vertical and horizontal, 
as in Figure 61, its h edges will slope either up to the right or 
up to the left. Piece A has no h edges. It and the next eight 
pieces (B, C, D, E, 6 G, H, I )  are called "even" pieces because 
each of them has an even number of h edges sloping in each di- 
rection. (Zero is considered an even number.) The last five 
pieces (J, K, L, M, N) are "odd" because each has an odd num- 
ber of h edges sloping in each direction. Because there is an odd 
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FIGURE 63 
Tetrabolo rectangles with s-edge borders. 

Gray rectangles have been proved 
to have no solutions 



number of odd pieces, it follows that no matter how the entire 
set is arranged in a pattern with its s edges oriented orthogo- 
nally, there will always be an odd number of h edges sloping 
one way and an odd number sloping the other way. 

Now consider the two rectangles that require the full set of 14 
pieces. Clearly on each rectangle there must be an even number 
of h edges sloping in each direction. Within each rectangle 
every h edge is paired with another h edge sloping the same way 
and therefore the number of internal h edges, of either type, 
must be even. And on the rectangle that has a perimeter of h 
edges we count an even number of each type along the perime- 
ter. Neither rectangle, therefore, can be made with the 14 
pieces. The proof does not apply to all bilaterally symmetric fig- 
ures. You might like to prove this by constructing such a 
14-piece figure. 

The gray rectangles in Figure 63 that have a height of two s 
units and a width equal to or greater than seven can be proved 
impossible by observing that six pieces ( B y  D, E, G, My  N )  can- 
not be placed within any of them without dividing the field into 
areas that are not multiples of two s-unit squares. Therefore 
they cannot appear in the pattern. The remaining eight pieces 
can contribute a maximum of 17 s edges to the perimeter. But 
the 2-by-7 rectangle has a perimeter of 18 s edges, one more 
than this subset can provide. 

A sample pattern is shown for all s-edge and h-edge rec- 
tangles for which solutions are known. Are the four blank rec- 
tangles possible? Each calls for 12 pieces, which means that one 
"odd" piece and one "even" piece must be omitted. The 3-by-8 
rectangle may be impossible, because its large perimeter se- 
verely limits the number of ways pieces can be placed, but no 
impossibility proofs for any of the four blank rectangles are 
known, nor have solutions been found. 

More ambitious readers may wish to tackle a difficult square 
pattern proposed by O'Beirne. Discard the six symmetrical 
shapes that are unaltered when they are turned over and con- 
sider only the eight asymmetric shapes: D, F,  H, I ,  J, K ,  M ,  and 
N .  Since their combined area is 16 s-unit squares, they might 



Polyhexes and Polyaboloes 155 

form an order-4 square, but such a square has 16 s units in its 
border whereas the eight pieces can contribute no more than 
12 s units to the perimeter. Suppose, however, we consider each 
piece in its two mirror-image forms, making a set of 16 pieces in 
all. Pieces may not, in this case, be turned over; that is, each 
"enantiomorphic" pair must be used as a set of two mirmr 
images. The 16 pieces have a total area of 16 h-unit squares. 
Will they form a square with sides of four h units? O'Beirne 
found that they would, but such patterns are extremely hard to 
come by and none has been published. 

FIGURE 64 
Rectangles with h-edge borders. Gray one is impossible 



The tetraboloes also provide an answer-perhaps the sim- 
plest-to an unusual question asked by C. Dudley Langford of 
Ayrshire, Scotland, and passed on to me by a British mathema- 
tician, H. Martyn Cundy. Langford wanted to know if there 
are four shapes of equal area, no two of them alike (mirror 
images not being considered different), that can be put together 
in four different ways to make four larger replicas of each 
shape. All four pieces must be used in each replica. I discovered 
a simple solution with a set of four tetraboloes. Can the reader 
pick out the four and show how they replicate themselves? 

A D D E N D U M  

SETS OF tetrahexes have been marketed in Europe, but I know 
of no such sets in the United States. In 1971 a set of ten plastic 
polyhexes (the three trihexes and the seven tetrahexes), with a 
booklet of problems by Stewart T. Coffin, was sold under the 
trade name of Snowflake. 

Many readers provided proofs of the uniqueness of the tetra- 
hex tower solution (in its two variants). I n  all proofs the key 
was the propeller's placement. 

Andrew C. Clarke, of Cheshire, England, reported that each 
polyhex of orders 4 and 5 would tile the plane, and all but four 
of the order-6. He also reported that each of the order-4 polya- 
boloes would tile the plane, all but four of order-5, and all but 
!9 of order-6. None of these results has been confirmed. 

W. F. Lunnon, of the Atlas Computer Laboratory, Chilton, 
England, enumerated the polyhexes through order-I2 in his 
paper "Counting Hexagonal and Triangular Polyominoes," in 
Graph Theory and Computing, edited by R. C. Read (Academic 
Press, 1972). The counts for orders 9 through 12 are, respec- 
tively, 6,572; 30,490; 143,552; and 683,101. 

Little work has been done on enumerating the polyaboloes. 
Several readers agreed that there are 318 of order-7. Charles W. 
Trigg counted 1,106 of order-8, and Robert Oliver counted 
3,671 of order-9. 
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A N S W E R S  

THE IMPOSSIBLE tetrahex figure among those displayed in Fig- 
ure 59 is the triangle. David Klarner was able to prove it impos- 
sible by an argument that begins by observing the limited num- 
ber of positions in which the propeller can be placed. 

In Klarner's solution for the difficult tower figure [see Figure 
651, note that the shaded portion has an axis of symmetry al- 
lowing it to be reflected and thus providing a second solution. 

One way to form a square with the eight asymmetric tetra- 
boloes and their mirror images (no turning over being allowed) 
was independently discovered in 1962 by two Britons, R. A. Set- 
terington of Taunton and A. F. Spinks of Letchworth [see Fig- 
ure 661. Pieces G, H, and M form a shape that can be rotated 
and reflected; JKN and FJK can each be rotated, and CE can be 
interchanged with MP to provide many variant solutions. 
Thomas H. O'Beirne of Glasgow recently found a different way 
to arrange A, B, C, D, E, F, G, and H to form a pattern in which 
rotations and interchanges of parts produce still other variants. 
The number of distinct solutions is far from known. 

'\ 

', 
'\ ', 

FIGURE 65 '\ FIGURE 66 

The tower tetrahex Solution of difficult tetrabolo problem 



Four tetraboloes can be put together to make larger replicas 
of each [see Figure 671. Only the triangle need be moved. Note 
that still other positions of the triangle produce replicas of four 
more tetraboloes, making the total eight, or more than half of 
the entire set. Wade E. Philpott and others found that tetra- 
boloes C, I, K, L also solve this problem. 

Are there other sets of four different shapes with the same 
property? Maurice J. Povah of Blackburn, England, has proved 
the number to be infinite. His proof derives from the solution 
shown at the left in Figure 68, in which four octominoes form - 
replicas of themselves. An affine transformation [right], vary- 
ing the angles, furnishes an infinity of solutions. Povah also 

FIGURE 68 
Octomino solution with infinite variants 
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discovered a solution with four hexominoes [see Figure 691. 
These pieces will replicate 15 different hexorninoes, including 
themselves. Povah believes this is a maximum for the hexorni- 
noes. With pentominoes the best he could do with four pieces 
was to form four replicas of other pentominoes, not including 
any of their own shapes. 

FIGURE 69 
Hexomino solution to replication problem 

John Harris cleared up the problems of the four unsolved 
tetrabolo rectangles by proving ingeniously that the 3-by-8 and 
the 4-by-6, among the rectangles with s sides, are impossible, 
and by supplying solutions for the two h-edge rectangles, 
2-by-6 and 3-by-4. 



C H A P T E R  1 2  

Pe$ect) Amicable, Sociable 

ONE WOULD BE hard put to find a set of whole numbers with a 
more fascinating history and more elegant properties, sur- 
rounded by greater depths of mystery-and more totally use- 
less-than the perfect numbers and their close relatives, the 
amicable (or friendly) numbers. 

A perfect number is simply a number that equals the sum of 
its proper divisors; that is, of all its divisors except itself. The 
smallest such number is 6, which equals the sum of its three 
divisors, 1, 2, and 3. The next is 28, the sum of 1 + 2 + 4 + 7 + 
14. Early commentators on the Old Testament, both Jewish and 
Christian, were much impressed by the perfection of those two 
numbers. Was not the world created in six days and does not 
the moon circle the earth in twenty-eight? In The City of God, 
Book 11, Chapter 30, St. Augustine argues that although God 
could easily have created the world in an instant, He preferred 
to take six days because the perfection of 6 signifies the perfec- 
tion of the universe. (Similar views had been advanced earlier 
by the first-century Jewish philosopher Philo Judaeus in the 
third chapter of his Creation of the World.) "Therefore," St. 
Augustine concludes, "we must not despise the science of num- 



hers, which, in rnany passages (11-Holy Scripture, is li~rlnd to be (11- 
eiiii~ien~ service lo the carefirl iiiterpreter." 

The first great achie\~eriieiir in perfect-nr~riiber rlieol-y ct~ls 
Euclid's i~igctiiorls proof tliat tllc forrrrula 2" - '(2" - 1 )  always 
givcs an cvcti pcrfcct ~illriibcr if tlic parc~ithctical cxprcssion is 
a prime. (It is never a prinie unless the exponent n also is 
prime, although if'n is prirne, 2" - 1 need not be, iiideecl rarely 
is, prime.) It was not rrntil 2,000 years later tliat Leoiiliard 
Erller provet1 (hat this fbriiiul;~ gives all even perfecls. In whar 
follows, "perfect tilumbcr" will rrrcarl "cvcn pcrfcct riu~llbcr" 
bccarlsc tio odd pcrfccts arc kriowti and they probably do ~ i o t  
cxist. 

To get an intuitive grasp of' Euclid's remarkable fi)nllula and 
see Ilo~tl closely it ties perfect rlurrlbers to the fiulliliar doubling 
series, 1, 2, 4, 8,  l ( i  ..., consitler tlie legentlary srory about the 
Persian king cvlio was so deligh~etl witli r lie game of chess th21r he 
toltl its originato~ llc coultl llavc atiy gift 1ic warltcd. '1'11~ lllari 
made wliat sccmctl to be a trrodcst rcclucst: 1ic askcd for a sirlglc 
graiii of wheat or1 the first square of' the cllessboard, two graiiis 
oil the second square, fimr on the third, and so on up the pow- 
ers of' :! to the sixty-fi)urth square. It turns out that the last 
sclr1;we worlld require !4,223,372,0~S(i,XM,775,XOX grains. The 
rot211 of all the grains is rctrice rhat nr~rnber milirrs 1, or a fectr rnil- 
lion tiliics tlic world's aritirlal wlicat crop. 

I n  Figure 70 cacll sql1al.c of a clicssboard is labclcd witli tlic 
rlurllber of grains it would liold. Taking 011e grain fro111 it square, 
n, leaves 2" - 1 grains, tlle parentlletical expression of Euclid's 
forriirlla. If rhis nr~tiiber is 21 pririie, rnrll~iply i t  by the number of 
grains on rlie precetling square, the 2" - ' of the formrlla. 16ili, 
we have a perfect number! P r i ~ i i e ~  of r lie torrn 2" - 1 are now 
called Mcrscn~ic primes aftcr tlic scvcntccntli ccntl1r.y Eir.ticll 
riiatlictiraticiati who strltlictl thclii. 'l'lic sliatlctl squan.s in the 
illustration riiark tlie cells that become Merserlrle primes after 
losing one grain and that consequently provide the first nine 
perftcr nuriihers. 

From Euclid's forriirlla it is not dif'ficrllr lo prove all kintls of 
wcirtl ant1 bcarltifill properties of pcrfcct nllriibcrs. For cxaliiplc, 



FIGURE 70 
Powers of 2 on a chessboard. Shaded squares yield Mersenne primes 

all perfects are triangular. This means that a perfect number 
of grains can always be arranged to form an equilateral triangle 
like the ten bowling pins or the fifteen pool balls. Put another 
way, every perfect number is a partial sum of the series 1 + 2 + 
3  + 4 + . . . It is also easy to show that every perfect number 
except 6 is a partial sum of the series of consecutive odd cubes: 
i3+33+53+ . . . 

The digital root of every perfect number (except 6) is 1. (To 
obtain the digital root add the digits, then add the digits of the 
result, and continue until only one digit remains. This is the 
same as casting out nines. Thus to say that a number has a 
digital root of 1 is equivalent to saying that the number has a re- 
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mainder of 1 when divided by 9.) The proof involves showing 
that Euclid's formula gives a number with a digital root of 1 
whenever n is odd, and since all primes except 2 are odd, perfect 
numbers belong to this class. The one even prime, 2, provides 
the only perfect number, 6, that does not have 1 as its digital 
root. Perfect numbers (except 6) can also be shown to be evenly 
divisible by 4, and equal to 4 (modulo 12). 

Because perfect numbers are so intimately related to the pow- 
ers of 2, one might expect them to have some kind of striking 
pattern when expressed in the binary system. This proves to be 
correct. Indeed, given the Euclidean formula for a perfect num- 
ber, one can instantly write down the number's binary form. 
Readers are invited first to determine the rule by which this can 
be done and then to see if they can show that the rule always 
works. 

I t  is momentarily surprising to learn that the sum of the re- 
ciprocals of all the divisors (including the number itself) of a 
perfect number is 2. For example, take the case of 28: 

This theorem follows almost immediately from the definition 
of a perfect number, n, as the sum of its proper divisors. The 
sum of all its divisors obviously is 2n. Let a, b, c, . . . be all the 
divisors. We can express the equality as follows: 

n n n  - + T + - + .  . . =2n. 
a c 

Dividing all terms by n produces: 

The converse is also true. If the reciprocals of all divisors of 
n add to 2, n is perfect. 

The two greatest unanswered questions about perfects are: 



Is there an odd perfect number? Is there an infinity of even 
perfect numbers? No odd perfect has yet been found, nor has 
anyone proved that such a number cannot exist. (In 1967 
Bryant Tuckerman showed that an odd perfect, if it exists, 
must be greater than The second question hinges, of 
course, on whether there is an infinity of Mersenne primes, 
since every such prime immediately leads to a perfect number. 
When each of the first four Mersenne primes (3, 7, 31, and 
127) is substituted for n in the formula 2" - 1, the formula 
gives a higher Mersenne prime. For more than seventy years 
mathematicians hoped this procedure would define an infinite 
set of Mersenne primes, but the next possibility, n = 213 - 1 = 
8,191, let them down: in 1953 a computer found that 28,191 - 1 
was not a prime. No one knows whether the series of Mersenne 
primes continues forever or has a highest member. 

0ystein Ore, in his Number Theory and Its History, quotes a 
once plausible prediction from Peter Barlow's 18 1 1 book, The- 
ory of Numbers. After giving the ninth perfect, Barlow adds 
that it "is the greatest that will ever be discovered, for, as they 
are merely curious without being useful, it is not likely that 
any person will attempt to find one beyond it." In 1876 the 
French mathematician Edouard Lucas, who wrote a classic 
four-volume work on recreational mathematics, announced the 
next perfect to be discovered, 2126 (2lZ7 - 1 ) . The twelfth Mer- 
senne prime, on which it is based, is one less than the number 
of grains on the last square of a second chessboard, if the dou- 
bling plan is carried over to another board. Years later Lucas 
had doubts about this number, but eventually its primality was 
established. I t  is the largest Mersenne prime to have been found 
without the aid of modern computers. 

Figure 71 lists the formulas for the twenty-four known per- 
fects, the number of digits in each number, and the numbers 
themselves until they get too large. The twenty-third perfect 
came to light in 1963 when a computer at the University of 11- 
linois discovered the twenty-third Mersenne prime. The univer- 
sity's mathematics department was so proud of this that for 
many years its postage meter stamped the prime on its enve- 



FIGURE 71
The first twenty-four perfect numbers

Perfect, Amicable, Sociable 165



lopes. [See top of Figure 72.1 In  1971, at IBM's research center 
in Yorktown Heights, New York, Tuckerman found the twenty- 
fourth Mersenne prime. [See bottom of Figure 72.1 This num- 
ber, of 6,002 digits, is the largest known prime. It supplied, of 
course, the twenty-fourth perfect number. 

The end digits of perfect numbers present another tantalizing 
mystery. It is easy to prove from Euclid's formula that an even 
perfect must end in 6 or 8. (If it ends in 8, the preceding digit 
is 2; if it ends in 6, the preceding digit must be 1, 3, 5, or 7 ex- 
cept in the cases of 6 and 496.) The ancients knew the first four 
perfects-6, 28, 496, and 8,128-and from them rashly con- 
cluded that the 6's and 8's alternated as the series continued. 
Scores of mathematicians from ancient times through the Ren- 
aissance repeated this dogmatically, without proof, particularly 
after the fifth perfect number (first correctly given in an 
anonymous fifteenth-century manuscript) turned out to end in 
6. Alas, so does the sixth. The series of terminal digits for the 
twenty-four known perfects is 

There are infuriating hints of order. The first four digits 
alternate 6 and 8, then 66 and 88 alternate four times. Next, a 
lone 6 introduces the first triplet of 8's, followed by the first 

FIGURE 72 

Postage-meter stamp 
and a letterhead 
honoring the two 
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triplet of 6's and a lone 8. Finally, the first quadruplet, 6666, 
appears. Are the digits trying to tell us something? Probably 
not. Although no one has found a rule for predicting the last 
digit of the next, undiscovered perfect, it is easy to determine 
the digit if you know the number's Euclidean formula. Can the 
reader find a simple rule? 

Numbers that are 1 more or 1 less than the sum of their 
proper divisors have been called "almost perfect." All powers 
of 2 are almost perfect numbers of the +1 type. No other +I 
almost perfects are known, nor have they been proved impos- 
sible. No -1 almost perfects have been found, and they too have 
not yet been proved not to exist. 

Amicable numbers derive from an obvious generalization of 
the perfects. Suppose we start with any number, add its divisors 
to obtain a second number, then add the divisors of that number 
and continue the chain in the hope of eventually getting back 
to the original number. If the first step immediately restores 
the original number, the chain has only one link and the num- 
ber is perfect. If the chain has two links, the two numbers are 
said to be amicable. Each is equal to the sum of the divisors of 
the other. The smallest such numbers, 220 and 284, were known 
to the Pythagoreans. The proper divisors of 220 are 1, 2, 4, 5, 
10, 11, 20, 22, 44, 55, and 110. They add to 284. The proper 
divisors of 284 are 1'2, 4, 71, and 142. They add to 220. 

The Pythagorean brotherhood regarded 220 and 284 as sym- 
bols of friendship. Biblical commentators spotted 220 in Genesis 
32:14 as the number of goats given Esau by Jacob. A wise 
choice, the commentators said, because 220, being one of the 
amicable pair, expressed Jacob's great love for Esau. During the 
Middle Ages this pair of numbers played a role in horoscope 
casting, and talismans inscribed with 220 and 284 were believed 
to promote love. One poor Arab of the eleventh century re- 
corded that he once tested the erotic effect of eating something 
labeled with 284, at the same time having someone else swallow 
220, but he failed,t.qj+d how the experiment worked out. 

It was not u k l  1636 that another pair of amicable numbers, 
17,296 an$i8,416, were discovered by the great Pierre de Fer- 



mat. He and Ren6 Descartes independently rediscovered a rule 
for constructing certain types of amicable pairs-a rule they 
did not know had previously been given by a ninth-century 
Arabian astronomer. Using this rule, Descartes found a third 
pair: 9,363,584 and 9,437,056. In the eighteenth century Euler 
drew up a list of sixty-four amicable pairs (two of which were 
later shown to be unfriendly). Adrien Marie Legendre found 
another pair in 1830. Then in 1867 a sixteen-year-old Italian, 
B. Nicolb I. Paganini, startled the mathematical world by an- 
nouncing that 1,184 and 1,210 were friendly. It was the second- 
lowest pair and had been completely overlooked until then! 
Although the boy probably found it by trial and error, the dis- 
covery put his name permanently into the history of number 
theory. 

More than 1,000 amicable pairs are now known. (Figure 73 
lists all pairs smaller than 100,000.) The most complete listing 
is in a three-part monograph, "The History and Discovery of 
Amicable Numbers," by Elvin J. Lee and Joseph Madachy 

FIGURE 73 
Amicable pairs with 
five or fewer digits 
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(Journal of Recreational Mathematics, Vol. 5, Nos. 2, 3, and 4, 
1972). The largest pair on this list of 1,107 pairs has 25 digits 
each. Discovered too late to be included are several pairs found 
in 1972 by H. J. J. te Riele, of Amsterdam, the largest of which 
has 152 digts in each number. So far as I know, this is the 
largest known pair. 

All known amicable pairs have the same parity: two even 
numbers or (more rarely) two odd numbers. No one has yet 
proved that a pair of mixed parity is impossible. Every odd ami- 
cable pair so far discovered is a multiple of 3. I t  has been con- 
jectured that this holds for all odd amicables. There is no 
known formula for generating all amicable pairs, nor is it 
known whether their number is infinite or finite. 

In  1968 I noticed that all even amicable pairs seem to have a 
sum that is a multiple of 9, and conjectured that this is always 
the case. Lee shot the conjecture down by finding three counter- 
examples among the known amicables, and later finding eight 
more among new pairs of his own discovery. (See "On Division 
by Nine of the Sums of Even Amicable Pairs," by Elvin J. Lee, 
Mathematics of Computation, Vol. 22, July 1969, pages 545- 
48.) Because all these counter-instances are numbers with digi- 
tal roots of 7, I modified my conjecture to: Except for even 
amicable pairs of numbers equal to 7 (modulo 9), the sums of 
all pairs of even amicable numbers equal 0 (modulo 9). 

If the chain that leads back to the original number has more 
than two links the number is called "sociable." Until 1969 only 
two such chains were known. Both were announced in 1918 by 
P. Poulet, a French mathematician. One is an order-5 chain: 
12,496; 14,288; 15,472; 14,536; 14,264. The other is a truly as- 
tonishing chain of twenty-eight links that starts with 14,316. 
This is the largest known chain. (Note that 28 is a perfect num- 
ber, and that if the 3 in the lowest link is moved to the front 
you have pi to four decimals.) 

Suddenly, in 1969, Henri Cohen, of Paris, discovered eight 
sociables of order 4. (See his paper "On Amicables and Sociable 
Numbers," Mathematics of Computation, Vol. 24, 1970, pages 
423-29). More order-4 sociables were later found by others. The 



total now stands at fourteen such chains, the smallest numbers 
of which are listed below: 

1,264,460 
2,115,324 
2,784,580 
4,938,136 
7,169,104 

18,048,976 
18,656,380 
28,158,165 
46,722,700 
81,128,632 

174,277.820 
209,524,210 
330,003,580 
498,215,416 

No sociables higher than order-4 are known except for the 
order-5 and order-28 chains found in 1918. The biggest un- 
solved problem is whether a 3-link chain, known as a "crowd," 
exists. No one has come up with any reason why such chains are 
impossible, but neither has anyone found an example. Com- 
puter sweeps of least numbers up to 60 billion have been made 
without success. Useless though crowds may be, such searches 
are likely to continue until a triple chain is encountered or until 
some clever number theorist proves their impossibility. 

A N S W E R S  

GIVEN A perfect number's Euclidean formula, what simple rule 
provides the number's binary form? The formula: 2" - '(2" 
- I ) .  The rule: Put down n ones followed by n - I zeros. Ex- 
ample: Perfect number 25 - 1(25 - 1 ) = 496 has the binary 
form 11 11 10000. 

The rule is easily understood. In binary form 2% is always 1 
followed by n zeros. The expression on the left side of Euclid's 
formula, 2" - ', therefore has the binary form of 1 followed by 
n - I zeros. The parenthetical expression (2" - I) ,  or one less 
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than the nth power of 2, has the binary form of n ones. The 
product of these two binary numbers obviously will be n ones 
followed by n - 1 zeros. 

Readers will find it amusing to test the theorem that the sum 
of the reciprocals of the divisors of any perfect number (includ- 
ing the number itself as a divisor) is 2, by writing the recipro- 
cals in binary form and then adding. 

There are several ways to state rules for determining the 
final digit of a perfect number by inspecting its Euclidean for- 
mula, but the following seems the simplest. I t  applies to all per- 
fect numbers except 6. If the first exponent (n - 1) is a mul- 
tiple of 4, the perfect number ends in 6. Otherwise it ends in 28. 
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Polyominoes and 

SOLOMON W. GOLOMB'S book Polyominoes, published by Scrib- 
ner's, stimulated worldwide interest in these figures: polygons 
formed by joining unit squares along their edges. This interest 
in turn led Golomb, who teaches electrical engineering and 
mathematics at the University of Southern California, to devote 
more of his off-duty hours to exploring some of the darker 
corners of the field. A communication from him deals entirely 
with a series of fascinating problems, only partially solved, re- 
lating to a pentomino game he invented many years ago. 

The 12 possible pentominoes (five-square polyominoes) are 
shown in Figure 74 with Golomb's mnemonic names for them. 
To play the standard pentomino game you will need these 12 
pieces, cut from cardboard, and a standard eight-by-eight 
checkerboard with squares the same size as the squares that 
form the pieces. If the reader has never played this game, he is 
urged to prepare a set of pentominoes and try it; it is one of the 
most unusual mathematical board games of recent years. 

Two players sit across the empty board with the 12 pentom- 
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FIGURE 74 

<to+ * " 
inoes spread on the table beside it. The first player takes one 
of the pieces and places it so as to cover any five squares of the 
board. The second player similarly places one of the remaining 
11 pieces to cover five of the remaining empty squares. Play 
alternates until one player is unable to move, either because no 
remaining piece will fit or because no pieces are left. The 
player who cannot play is the loser. Games are short, and of 
course no draw is possible. Nevertheless, great skill and insight 
are necessary for good play. Mathematicians are far from 
knowing if the first or the second player can always win if he 
plays correctly. "The complete analysis of the game," Golomb 
writes, "is just at the limit of what might be performed by the 
best high-speed electronic computer, given a generous allotment 
of computer time and a painstakingly sophisticated program." 
The most useful strategy, Golomb explains, is to try to split the 
board into separate and equal areas. There is then an excellent 
chance that each move by your opponent in one region can be 
matched by your next move in the other region. If this con- 
tinues, you are sure to have the last move. 

A typical game during which both players keep this strategy 
in mind has been constructed by Golomb and is shown in Fig- 
ure 75. Player A puts the X near the center to prevent his op- 
ponent from splitting the board. Player B counters by fitting 
the U against the X (move 2)-a good move, says Golomb, be- 
cause it "does not simplify the situation for the opponent or al- 



low him to split the board." Player A is now equally cagey. His 
L move (move 3) continues to prevent a split. The fourth move, 
by B, is weak because it allows A to place the W (move 5) in 
such a way that it splits the board into two equal regions of 16 
squares each. In this case the regions are also identical in shape. 

Player B now plays the I  (move 6), hoping his opponent will 
not find a piece that fits the other region. But A is able to place 
the P (move 7) in such a way that he wins. Although three of 
the remaining regions are each large enough to hold a piece, 
the only three pentominoes that can fit those regions-the I ,  P, 
and U-have already been played. 

The most interesting variation of the standard game, Golomb 
continues, is one he calls "choose-up pentominoes." Instead of 
selecting a piece at each move, players alternate in choosing 
pieces before the game begins, until each owns six. The last to 
choose plays first, and the game continues as before except that 
each player must play only his own pieces. The strategy of this 
game is quite different from that of the preceding one. Instead 
of using the split to create a situation in which an even number 
of moves remains, a player tries to leave as many moves as pos- 
sible for his own pieces and as few as possible for his opponent's. 
He does this by creating what Golomb calls "sanctuaries": re- 
gions into which only his own pieces will fit. 

Golomb's comments on the typical choose-up game shown in 
Figure 76 are as follows. Player A gets rid of the X, his most 
troublesome piece, by playing it as shown in step 1 in the illus- 
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tration. (Pieces chosen by A and B are listed beside each board 
and shown crossed off after use.) Player B places his W, an- 
other difficult piece (step 2 ) .  A now uses his F (step 3 )  to create 
a sanctuary for his Y. B uses his L (step 4) to make a sanctuary 
for his U. A plays his N (step 5).  B places his I (step 6) to cre- 
ate a two-by-three rectangle that accommodates only two re- 
maining pieces: his P and U. A then plays his V (step 7) but 
resigns when he sees that the plays must continue as shown 
(step 8). The sanctuaries are filled in turn and A is left with a 
T pentomino that will not fit. 

If players of this game are unequal in skill, Golomb suggests 
that the better player give himself a handicap by letting his op- 
ponent choose first and play last. A bigger handicap allows the 
weaker of the two players to make the first two, or even three, 
choices as well as play last. 

There are still other pleasant variations of the game. In  
"deal-out pentominoes" the names or pictures of the pieces are 
placed on cards. The deck is shuffled and dealt. Each player 
takes the pieces indicated by his cards and the game proceeds 
as in the choose-up form. In  "partnership pentominoes" four 
players sit on four sides of the board and take turns playing, 
with opposite players forming teams. The team of the first 
player unable to move is the losing team. Any of the three pre- 
viously described games can be played in this way. In  "cut- 
throat pentominoes," which also applies to all three games, 
three or more players participate, but each is on his own. The 
last to play is the winner. He gets 10 points per game. The first 
person unable to play scores nothing and all others get 5 points. 

Now for a sampling of some new problems suggested to Go- 
lomb by the standard game when it is played on square boards 
of various sizes. The board must be at least 3 by 3 to allow a 
first move, and of course the first player must win on the 3-by-3 
since no second move can be made. d n  the 4-by-4 board it turns 
out that the second player can always win. Golomb has set out 
all possible first plays--excluding reflections and rotations- 
and a winning reply [see Figure 771. In  every case but one, the 
second player has a choice of winning moves. How long will it 



F I ~ U R E  76 A game of "choose-up pentominoes" 

take the reader to identify the game in which the second player 
has only the one winning response shown? 

It  might be supposed that the 5-by-5 board would be more 
difficult to analyze than the 4-by-4, but surprisingly it is much 
simpler. The reason is that there is a first move that can easily 
be shown to lead to a victory for the first player. Can the reader 
discover it? 

The order6 board brings an enormous jump in complexity; 
no one yet knows which player has the advantage. "Several 
promising moves have been subjected to exhaustive analysis 
and found to allow the second player to win," Golomb writes, 
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"but the complete analysis will be quite lengthy, involving the 
correct follow-up strategies against each of a very large number 
of possible first moves." 

Another challenging problem is that of determining the 
shortest possible game that can be played on squares of order-I3 
or less. (Beyond 13, all 12 pieces have to be played, so that the 
problem becomes trivial.) In  other words, what is the lowest 
cardinal number for a subset of the 12 pentominoes that can be 
played on an n-by-n board in such a way that no remaining 
piece will fit? Examples of the shortest games known on boards 
through order-13 are shown in Figure 78. In many cases more 
than one subset will yield a solution. 



;pl j.. 
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FIGURE n 
Proof of the second player's advantage 

on the four-by-four board 



n=l n=2 n=3 

0 MOVES 0 MOVES 1 MOVE 

n=7 
4 MOVES 

n=8 
5 MOVES 

n= l l  
8 MOVES 

n=12 
10 MOVES 
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n=4 
2 MOVES 

n=6 

3 MOVES 

6 MOVES 7 MOVES 

FIGURE 78 
Shortest games known 

for boards of 1 to 13 
squares per side 

n=13 
11 MOVES 



The shortest game on the 5-by-5 board has been left blank. 
Here are two easy problems. What is the shortest game that can 
be played on this field? What is the longest? 

What about rectangular boards that are not square? In an ex- 
haustive analysis of all such boards with areas of 36 square units 
or less, Golomb found that the 5-by-6 board was the most diffi- 
cult to analyze. The first player can always win if he plays cor- 
rectly, and there are several winning first moves. Readers who 
find the   receding four problems too easy may enjoy working on 
this much more difficult one: Find all the winning first moves 
on the 5-by-6 board. 

A quite different type of polyomino problem-not discussed 
in Golomb's book and also far from fully explored-is that of 
determining if duplicates of a given polyomino will fit together 
to form a rectangle. (Asymmetric pieces may be turned over 
and placed either way.) If so, what is the smallest rectangle 
that can be so formed? If not, a proof of impossibility must be 
given. The problem was suggested by David Klarner when he 
was a graduate student in mathematics at the University of Al- 
berta. The following year a group of high school students at- 
tending a summer institute in mathematics at the University of 
California at Berkeley studied the problem under the direction 
of their teacher, Robert Spira. They called it the "polyomino- 
rectification problem," using the term "rectifiable" for any 
polyomino that could be replicated to form a rectangle. 

The monomino (one square) and domino (two squares) are 
obviously rectifiable since each is itself a rectangle. Both tromi- 
noes (three-square figures) are rectifiable: one is a rectangle, 
and two L trominoes form a two-by-three rectangle. Of the five 
tetrominoes (four-square shapes) the straight tetromino and 
the square tetromino are rectangles. Two L tetrominoes form a 
four-by-two, and the T tetromino replicates to fill the four-by- 
four square as shown in Figure 79a. The remaining tetromino 
is not rectifiable. The proof is trivial. If it is placed to fit the 
upper left corner of a rectangle, it is impossible to form a top 
edge that terminates at a second corner, as shown in Figures 
79b and 79c. 
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I FIGURE 79 

Problems in making rectangles 

Similar impossibility proofs are easily found for most of the 
pentominoes. The reader may enjoy showing that the T, U ,  V, 
W ,  X, 2, F, and N pentominoes are not rectifiable. The I, L, 
and P are easily rectified. This leaves only the Y, the most dif- 
ficult of the pentominoes to analyze. Is the Y pentomino, in Fig- 
ure 79d, rectifiable? If so, what is the smallest rectangle it will 
fill? If not, prove it. 

David Klarner has established that nine hexominoes are rec- 
tifiable. The only hexomino known to require more than four 
replications to form a rectangle is the piece shown, with its 
minimal pattern, at the top of Figure 80. Only one hexomino 
has not yet been proved to be either rectifiable or not. It is the 
hexomino shown at the top of Figure 81. 

The only heptomino known to require more than four repli- 
cas to make a rectangle is the one shown at the bottom of Fig- 
ure 80. Its smallest rectangle (discovered by James E. Stuart, 
of Endwell, New York) is known to be the order-14 square, re- 
quiring 28 pieces. If the reader will cut 28 replicas of this hep- 
tomino from cardboard or thin wood, he will find it a splendid 
puzzle to fit them into a square. (Pieces may be turned over 
and placed with either side up.) One heptomino, at the bottom of 
Figure 81, is not yet known to be rectifiable or not. 

In a letter written in 1974, Klarner passed along a beautiful 
result which he obtained: 



FIGURE 80 
Hexomino rectified (top) 

w 
and heptomino 

Let R denote the set of all sizes of rectangles which can be 
filled with copies of a particular n-omino. For example, R for 
the Y pentomino begins: J x 10, 10 x 10, 10 x 14, 10 x 16, 
. . . Then there exists a finite subset S of R such that every ele- 
ment in R can be cut into pieces each belonging to S .  This 
means that there are only a finite number of "atomic" problems 
for a given n-omino. In other words, if we have packed enough 
sizes of rectangles, then all larger packable rectangles can be 
cut into rectangles of the smaller size. The set of atomic rec- 
tangles for the Y pentomino is not yet completely determined, 
although it is known up to a finite computation. In general, we 
are not sure there is a finite computation which determines the 
finite basis S of a given set R. Probably not. 

Klarner also reports that there is an algorithm which decides 
in a finite number of steps whether copies of a given finite set 
of polyominoes pack a k x n rectangle for some n where k is a 
given (fixed) natural number. There is, therefore, a procedure 
for answering: Does the set sf polyominoes pack a 1 x n rec- 
tangle? Does it pack a 2 x n rectangle? Does it pack a 3 x n 
rectangle? And so on. However, the question of whether the 
given set packs a rectangle is not decidable, though nobody 
seems to know if it is decidable whether replicas of a single 
polyomino will pack a rectangle. 
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A D D E N D U M  

GOLOMB'S PENTOMINO game was first described in my Scien- 
tific American column, November 1957 (reprinted in the first 
collection of columns). Since then, two unauthorized versions 
of the game have been marketed. The first, called Pan-K5i 
(Phillips Publishers, Newton, Mass., 1960), used an order-10 
board and a set of 12 pentominoes for each of two players. In 
1967, Parker Brothers brought out Universe. The field was 
shaped like a fat cross, and four sets of pentominoes were in- 
cluded so that two, three, or four players could compete. As in 
Pan-KCi, a rule prevents placing any piece so as to create an 
enclosed area with fewer than five cells. The box's cover dis- 
played a scene from the motion picture 2001: A Space Odyssey 
showing the game played on a computer aboard the spaceship. 
When the movie was later released, however, this episode had 
been replaced by a computer chess game. 

The first authorized version of the game, with an instruction 
booklet prepared by Golomb, was marketed in 1973 by the 
Springbok Division of Hallmark Cards, just twenty years after 
Golomb introduced polyominoes to mathematicians in his mem- 
orable talk to the Harvard Mathematics Club. 

ANSWERS 

THE FIRST PROBLEM was to pick, from among the 33 different 
two-move pentomino games on the 4-by-4 board, the game that 
has only one winning reply by the second player. I t  is the game 
that was numbered 26 and is shown again in Figure 82a. The 
first play leaves a space on the right that can be filled only by 
the L pentomino. But if the L is placed in that space, the first 
player can win by playing on the left. If, on the other hand, the 
second player puts any piece except the L on the left, the first 
player can win by playing the L on the right. To win, therefore, 
the second player must place the L on the left as shown. 

On the 5-by-5 board the first player has an obvious win by 
playing the I pentomino in the center, as shown at b. His oppo- 



FIGURE 82 
Answers to pentomino problems 

nent must play on one side and the first player then wins by 
playing on the other side. The shortest possible game on this 
board has two moves ( c )  and the longest has five (d). The 
short-game pattern is unique, but there are many solutions to 
the long game. 

The first player can win on the 5-by-6 board if his first move 
is the one shown at e. There is no simple proof, and space does 
not allow showing correct responses to all possible second moves. 
There are at least three other first-move wins. 

The Y pentomino is rectifiable. The drawing at f shows the 
smallest rectangle that can be formed with replicas of this piece. 
The pattern illustrated is one of four ~ossible solutions. 
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Is it possible to pack a rectangle of odd area with the Y pen- 
tomino? The answer is yes, and the smallest such rectangle is 
the order-15 square, found by Jenifer Haselgrove, a computer 
scientist at the University of Glasgow. It is a remarkably difficult 
problem, which I shall here leave unanswered. 

James E. Stuart's rectification of the heptomino shown at the 
bottom of Figure 80 is given in Figure 83. It is not unique, be- 
cause the four central heptominoes can be put together a differ- 
ent way, and each of the shaded pairs can be mirror-reversed. 
Note the pattern's pleasing fourfold symmetry. 

Only four other heptominoes are known to be rectifiable. 
Their trivial minimum solutions are shown in Figure 84. 

FIGURE 83 
A square 

heptomino 
rectification 

FIGURE 84 
Four trivial heptomino rectifications 



C H A P T E R  1 4  

Knights of t h  
Square Table 

He sat leaning on his cane and thinking that with a 
Knight's move of this lime tree standing on a sunlit slope 
one could take that telegraph pole over there . . . 

-VLADIMIR NABOKOV, i n  The Defense 

THE DEFENSE, a novel about a chess grand master, is not the 
only novel by Nabokov-himself a good chess player and com- 
poser of chess problems-in which characters see knight's moves 
in patterns around them. Humbert Humbert, the narrator of 
Lolita, observes a latticed window with one red pane and com- 
ments: "That raw wound among the unstained rectangles and 
its asymmetrical position-a knight's move from the top-al- 
ways strangely disturbed me." 

The knight is the only chess piece with a move that covers an 
asymmetrical pattern of squares; surely it is this lopsidedness 
that gives the move its disturbing strangeness. Der Springer, as 
the piece is called in German, springs two squares along a row 
or file and then, like Lewis Carroll's White Knight behind the 
mirror, topples one square either left or right. Another way of 
describing this asymmetrical gallop is to say that the knight 
moves one square orthogonally, like a rook, pivots 45 degrees to 
the left or right, and moves one square diagonally, like a bishop. 
This is how the move of the ma (horse) in Chinese and Korean 
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chess must be explained because, unlike its Western counter- 
part, a ma cannot move if another piece occupies the diagonally 
adjacent square on which the pivot occurs. The keima (honor- 
able horse) of Japanese chess moves like the Western knight, 
vaulting all pieces in its way, but it can only go forward across 
the board. 

"The knight," said British puzzle expert Henry Ernest Du- 
deney, "is the irresponsible low comedian of the chessboard." 
No other chess piece has been the basis for so many unusual and 
amusing combinatorial problems. In this chapter we shall 
glance at a few of the classics along with some new discov- 
eries by Solomon W. Golomb. 

The oldest of knight puzzles, now the subject of an enormous 
literature, is the knight's tour. The problem is to find a single 
path of knight's moves (on boards of various sizes and shapes) 
that allows the knight to occupy each square once and only 
once. The tour is closed if the knight returns to its starting cell, 
open if the ends of the tour cannot be linked by a knight's move. 
If the board is checkerboard-colored, the colors of the cells will 
alternate along any tour. On a closed tour, therefore, there must 
be the same number of black cells as there are white. Since all 
odd-order square boards contain an odd number of cells, it fol- 
lows that no closed tours are possible on such boards. Tours of 
both types are impossible on squares of sides 2 and 4 but exist 
on all higher squares of even order. The 3-by-4 is the smallest 
rectangle on which an open tour is possible, and the 5-by-6 and 
3-by-10 are the smallest on which closed tours can be made. No 
tour of either type can be made if one side is less than 3, and no 
closed tour is possible if one side is 4. 

The power of color patterns to provide short, elegant proofs 
of tour impossibilities is strikingly demonstrated by Golomb's 
method of showing that a closed tour is impossible on any rec- 
tangle of side 4. The 4-by-n board is labeled with four letters 
[Figure 851. Observe that every A cell on a knight's path must 
be preceded and followed by a C cell. There are equal numbers 
of A and C cells, and all must lie on any closed tour. But the 
only way to catch all of them is by avoiding the B and D cells 



FIGURE 85 
Shading for the 4-by-n board to prove 

the impossibility of a knight's closed tour 

altogether, because once a leap is made from a C to a D cell there 
is no way to get back to an A cell without first landing on anoth- 
er C cell. If there is a closed tour, therefore, it will contain more 
C cells than A cells, and since this cannot be the case we conclude 
that such a tour is impossible. (For a similar proof, see Vol. 1, 
page 389, of the Ahrens work listed in the Bibliography.) 

No one knows how many different knight's tours exist on the 
order-8 chessboard; varieties of one type of tour alone run into 
the millions. The search has usually been for tours that display 
unusual symmetry or that create a matrix (when cells along it are 
numbered consecutively) with remarkable arithmetical proper- 
ties. For example, the closed tour shown in Figure 86, one of 
many constructed by Leonhard Euler in 1759, first covers the 
board's lower half, then its upper half, and all symmetrically 
opposite pairs of numbers (on a straight line through the center) 
have a difference of 32. 

A closed tour with fourfold symmetry (the pattern is the same 
for all 90-degree rotations) is not possible on the order-8 
board (or on any board with a side exactly divisible by 4). 
There are, however, five such tours on the order-6 board. The 
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FIGURE 87 
T h e  first semimagic knight's tour: a n  open tour 

w i th  each row and column adding to 260 

to 130. Numbering the cells in reverse order along the tour pro- 
duces the complement of the square: a semimagic square with 
all the properties of the former one. 

Is there a fully magic knight's tour on the chessboard? That 
is the biggest unanswered question in knight's-tour theory. 
Scores of semimagic tours have been found, both open and 
closed, but none with even one main diagonal that has the re- 
quired sum. It can be proved that fully magic tours are possible 
only on squares with sides that are multiples of 4. Since no tour 
is possible on the order-4, the chessboard is the smallest square 
for which the question is still open. Nor is a fully magic tour 
known for the order-I2 square. Such tours have been con- 
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strutted, however, for orders 16, 20, 24, 32, 40, 48, and 64. (A 
closed fully magic tour of order 16 is given on page 88 of Jo- 
seph S. Madachy's Mathematics on Vacation, 1966.) 

What is the largest number of knights that can be placed on 
a chessboard so that no two attack each other? Intuitively one 
sees that the answer is 32, achieved by putting knights on all the 
black squares or on all the white. Proving it is a bit tricky. One 
way is to divide the board into 2-by-4 rectangles. A knight on 
any cell of such a rectangle can attack only one other knight, 
and so the rectangle cannot hold more than four nonattacking 
knights. Since there are eight such rectangles, no more than 32 
nonattacking knights can go on the chessboard. 

Golomb points out that a cleverer proof (contributed by 
Ralph Greenberg to American Mathematical Monthly for Feb- 
ruary 1964, page 210) rests on the existence of a knight's tour 
of the chessboard. As we have seen, along such a tour the colors 
of the cells alternate. Clearly we can place no more than 32 
nonattacking knights on such a path. Equally obvious is the 
fact that they must go on alternating cells-that is, on all the 
white or all the black cells. Put another way, if we could place 
33 nonattacking knights on the chessboard, any knight's tour 
would then have to include a hop from one cell to another of the 
same color, which is impossible. The mere existence of the tour 
not only proves that 32 is the maximum but also adds a surprise 
bonus: it proves the uniqueness of the two solutions. The proof 
generalizes to all even-order squares on which a tour is possible. 
On odd-order squares tours must of course begin and end on the 
same color. On such squares there is therefore only one solution: 
placing the knights on all cells that are the same color as the 
central square. 

Turning from maxima to minima, let us ask: What is the 
smallest number of knights that can be placed on a square board 
so that all unoccupied cells are under attack by at least one 
knight? The following table gives the answers for boards of 
sides 3 to 10, and also gives the number of different solutions 
for each board (not counting rotations and reflections). 



ORDER 

3 
4 
5 
6 
7 
8 
9 
10 

PIECES 

4 
4 
5 
8 
10 
12 
14 
16 

SOLUTIONS 

2 
3 
8 

22 
3 
1 
1 (3) 
2 

Examples of solutions for orders 3 through 8 are shown in Fig- 
ure 88. The unique chessboard solution has often been published. 
Patterns for the two next-higher boards, orders 9 and 10, are 

FIGURE 88 

Solutions for boards of orders 3 through 8 
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not well known; the question marks in the table show that the 
order-9 solution is believed to be unique, and the order-10 is 
thought to have only two solutions. No knight, in any of the 
three patterns, is attacked by any other knight. Readers are in- 
vited to search for the solutions. 

Note that in the pattern for order 7 all occupied cells are at- 
tacked, and in the order-8 pattern four occupied cells are at- 
tacked. If we add the proviso that only unoccupied cells be 
attacked, more knights are required for each of these boards. 
The best results known to me are 13 knights for order 7 and 14 
for order 8. (I  am indebted to Victor Meally for supplying 
order-8 solutions.) 

Figure 89 left shows how 22 knights can be placed on the 
oder-1 1 board so that all unoccupied cells are attacked, and also 
no &&& is attacked It  was published in L'lnterddiare des -- 
Mathkmaticiens, Paris, Vol. 5 ,  1898, pages 230-31. This was be- 
lieved to be a minimal solution, even when knights are per- 
mitted to attack other knights, until 1973 when Bernard Le- 
maire, of Paris, found the remarkable 21-knight solution shown 
in Figure 89 right. It was first published in the Jourrzul of Rec- 
reational Mathematics, Vol. 6, Fall 1973, page 292. 

FIGURE 89 
22 knights attack only unoccupied cells (left), but 21 knights can 

attack all unoccupied cells (right), on the order-11 board 



All unoccupied cells of the order-12 board can be attacked 
with 24 knights as shown in Figure 90. This is also the best solu- 
tion known if no knight is allowed to attack another knight. I t  
is believed to be unique for both problems. 

In  Ahrens' work (Vol. 2, page 359), he gives the best-known 
solutions for attacking all unoccupied cells (knights may or 
may not attack one another) on boards of side 13, 14, and 15 as 
28, 34, and 37 knights, respectively. In  1967 Harry 0. Davis 
lowered the order-14 record to 32 knights. His bilaterally sym- 
metric pattern (Figure 91) is here published for the first time. 

If we ask that all cells, occupied or not, be attacked, the sim- 
plest approach is to draw two patterns on transparent paper, 
one for the minimum number of knights that attack all black 
cells and the other for the minimum number that attack all 
white cells. The two patterns can then be superposed in various 
ways to obtain final solutions. On the chessboard-as Dudeney 
explains in his solution to problem 319 in Amusements in Math- 
ematics-there are only two patterns of seven knights (the 
minimum) that attack all cells of one color. By combining the 
two patterns in all possible ways to attack all 64 cells, one can 

FIGURE 90 
24 knights are minimal for FIGURE 91 

attacking unoccupied cells on 32 knights attack all unoccupied 
order-12 board cells on  order-14 board 
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obtain only three 14-knight patterns, not counting rotations and 
reflections as being different. I know of no work on this version 
of the problem on higher-order boards. 

C H E S K E R S  

ABOUT 1947 Golomb invented a hybrid game combining fea- 
tures of chess and checkers, which he naturally called "cheskers." 
Like checkers, it is played on the 32 black squares of the order-8 
board. Since the knight cannot move on such a board without 
leaving the black squares, Golomb invented a modified knight 
that he recently christened the "cook." It moves three instead 
of two squares along a row or file, then one square at right an- 
gles. A centrally placed cook has eight moves [see Figure 921. 

FIGURE 92 

The eight moves of a centrally placed cook 



The cook actually is the reinvention of a piece called the 
"camel" that was used in fourteenth-century Persian chess. 
The rules and board for this complex early version of chess are 
completely known because of a surviving Persian manuscript, 
the fullest translation of which is in Duncan Forbes's History of 

Chess (London, 1880). The game is known as Tamerlane's 
chess because Tamerlane the Great is supposed to have been 
fond of it. In  addition to two camels on each side there are also 
two "asps" (corresponding to knights) and two powerful pieces 
called "giraffes" that move one cell diagonally and then con- 
tinue forward orthogonally for any unblocked distance. Leon- 
hard Euler worked on tours involving a piece that moved like 
the camel. 

"The invention of the cook," Golomb writes, "immediately 
suggests two problems: Is there a cook's tour of the checker- 
board? And how many cooks spoil the draughts? (That is, what 
is the maximum number of nonattacking cooks that can be 
placed on the board?) " 

To answer the first question, Golomb uses a transformation 
of the chessboard suggested by his colleague Lloyd R. Welch 
[see Figure 931. A jagged-edged board with cells twice the size 
of the chessboard cells is superposed on the chessboard in such a 
way that every black cell of the chessboard corresponds to a sin- 
gle cell of the jagged board. Every game playable on the black 
cells of the chessboard can now be played on the jagged board 
provided that the moves are suitably redefined. Since the trans- 
formation changes rows and files of the chessboard into diago- 
nals on the jagged board, and vice versa, it follows that bishop 
moves on the chessboard become rook moves on the jagged 
board, and rook moves become bishop moves. Checkers is played 
on the jagged board by starting with red checkers on cells 1 
through 12, black checkers on cells 21 through 32, and moving 
orthogonally instead of diagonally. (Has it ever occurred to the 
reader that, since checkers uses cells of one color only, two si- 
multaneous but completely independent checker games can be 
played on the same checkerboard by four people seated around 
the board, each pair of opponents playing on a different color?) 
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FIGURE 93 

A transformation devised by Lloyd R.  W e k h  

More surprisingly, Golomb points out, cook's moves on the 
chessboard turn into knight's moves on the jagged board! A 
cook's tour on the chessboard therefore corresponds to a knight's 
tour on the jagged board. A sample closed knight's tour on 
the jagged board is 1-142-5-10-23-17-29-2632-20-8-19-22- 
9-21-1 8-30-27-1 5-3-6-1 1-2412-7-4-1 628-3 1-25-1 3. Those 
numbers trace a cook's tour on the black cells of the chess- 
board. (For two other closed cook's tours on the standard chess- 
board, see Maurice Kraitchik, Mathematical Recreations, page 
265.) 

Since every cook's move on the chessboard joins two cells that 
are separated by two knight's moves, it occurred to Golomb that 
there might be a knight's tour of the chessboard of such a na- 



ture that every alternate cell along it would provide a cook's 
tour. He soon found, however, that when a knight enters a cor- 
ner cell of the board, it jumps there from a cell that is diago- 
nally adjacent to the cell to which it will be forced to leap when 
it leaves the corner. Those two diagonally adjacent cells are not 
a cook's move apart and consequently, Golomb writes, "the hope 
that a cook's tour could be extracted easily from a knight's tour 
is hopelessly cooked." 

Golomb's second question is answered in the same way as the 
analogous problem with knights. Since a cook's tour of the 
board exists, the maximum number of cooks must occupy 16 
alternate cells along such a tour. If the reader will mark the 16 
even cells along the given tour (or the 16 odd cells), he will be 
marking one of the two solution patterns. On the chessboard the 
marked cells form a square lattice on half of the cells of one 
color. On the jagged board the marked cells are all those of one 
color if the board is checkerboard-colored. 

For those who may want to try Golomb's cheskers, Figure 94 
shows how the 12 pieces of each side are placed. The eight 
"men" (M) move as checkers. The two kings (K) move as 
checker kings. The bishop (B) moves as a chess bishop, and the 
cook (C) moves as previously explained. Like the chess knight, 
the cook is not obstructed by intervening pieces. The men and 
kings capture as in checkers, by leaping over the victim. The 
bishop and cook capture as in chess, by moving onto the square 
of the victim. If a checker capture exists, it is compulsory to 
make it, unless a chess capture is also available, in which case 
the chess capture may be made if one wishes. Chess captures 
are optional. A man that reaches the last row must be promoted, 
but the owner of the piece may choose to make it either a king, 
a bishop, or a cook. 

Players alternate in moving. The object of the game is to cap- 
ture all the opponent's kings. The first player with no kings is 
the loser. It is therefore an important strategic decision, Golomb 
writes, whether to promote a man to a king (for better defense) 
or to a bishop or cook (for offense). As in checkers, a blocked 
position is a loss for the player unable to move. 
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FIGURE 94 

Starting position for Solomon W .  Golomb's game of "cheskers" 

A D D E N D U M  

RUFUS P. ISAACS pointed out that the jagged board shown in 
Figure 93 solves a puzzle he recalls seeing in the New York 
World when he was a boy. "A Scottish checker player," Isaacs 
wrote, "became irritated at the wastefulness of his board. He 
cut away half the squares. The remainder was in one simply 
connected piece on which it was still possible to play a legal 
game of checkers, using the original squares and making no ad- 
ditional markings. How did he do it?" 

Several readers attempted to devise a cheskers' "fool's mate"; 
that is, the shortest possible legal game. The shortest came from 
Wilfred H. Shepherd, Manchester, England. Black squares are 
numbered as shown in Figure 93. K, C, B, M stand, respectively, 
for king, cook, bishop, and man. The game is: 



1. M22-17 1. C1-13 
2. M23-19 2. C13-18 
3. C32-20 3. C18 X K30 
4. C20 x M8 4. C30-18 
5. C 8 x W  5. C18 x K31 (wins) 

A N S W E R S  

FIGURE 95 shows how to place a minimum number of knights, 
14, on the order-9 board so that all unoccupied cells are at- 
tacked. The solution is believed to be unique. Figure 95, right, 
shows how all unoccupied cells can be attacked with 16 knights 
on the order-10 board. This was thought to be unique until 
eleven readers found the second solution shown in Figure 96. 

FIGURE 95 
Solutions for boards of sides 9 and 10 

FIGURE 96 

Newly  discovered second solution 
for order-l0 board 



C H A P T E R  1 5  

T h  Dragon Curve 

and Other Problems 

1 .  INTERRUPTED BRIDGE G A M E  

A TELEPHONE CALL interrupts a man after he has dealt about 
half of the cards in a bridge game. When he returns to the ta- 
ble, no one can remember where he had dealt the last card. 
Without learning the number of cards in any of the four partly 
dealt hands, or the number of cards yet to be dealt, how can he 
continue to deal accurately, everyone getting exactly the same 
cards he would have had if the deal had not been interrupted? 

2 .  N O R A  1. A R O N  

A COLLEGE GIRL has the unusual palindromic name Nora Lil 
Aron. Her boyfriend, a mathematics major, bored one morning 
by a dull lecture, amuses himself by trying to compose a good 
number cryptogram. He writes his girl's name in the form of a 
simple multiplication problem: 

NORA 
L 

ARON 



Is it possible to substitute one of the ten digits for each letter 
and have a correct product? He is amazed to discover that it is, 
and also that there is a unique solution. The reader should have 
little trouble working it out. I t  is assumed that neither four- 
digit number begins with zero. 

3 .  P O L Y O M I N O  FOUR-COLOR PROBLEM 

POLYOMINOES are shapes formed by joining unit squares. A sin- 
gle square is a monomino, two squares are a domino, three can 
be combined to make two types of trominoes, four make five dif- 
ferent tetrominoes, and so on. I recently asked myself: What is 
the lowest order of polyomino four replicas of which can be 
placed so that every pair shares a common border segment? I 
believe, but cannot prove, that the octomino is the answer. Five 
solutions (there are more) were found by John W. Harris of 
Santa Barbara, California [see Figure 971. If each piece is re- 
garded as a region on a map, each pattern clearly requires four 
colors to prevent two bordering regions from having the same 
color. 

Let us now remove the restriction to four replicas and ask: 
What is the lowest order of polyomino any number of replicas 
of which will form a pattern that requires four colors? I t  is not 
necessary for any set of four to be mutually contiguous. I t  is 
only necessary that the replicas be placed so that, if each is 
given a color, four colors will be required to prevent two pieces 
of the same color from sharing a common border segment. Re- 
gions formed between the replicas are not considered part of 
the "map." They remain uncolored. The answer is a polyomino 
that is of much lower order than eight. 

4 .  H O W  M A N Y  SPOTS? 

THIS DOUBLE PROBLEM was given by D. Mollison of Trinity Col- 
lege, Cambridge, in a 1966 problems contest for members of the 
Archimedeans, a Cambridge student mathematics society. The 
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FIGURE 97 
John W. Harris' 

octomino arrangements 

first question: What is the maximum number of points that can 
be placed on or within the figure shown in ~ i ~ u r e  98, provided 
that no two points are separated by a distance that is less than 
the square root of 2? 

FIGURE 98 
D. Mollison's problem 1 



The second question: In how many different patterns can 
this maximum number of points be placed, not counting rota- 
tions and reflections of patterns as being different? The dotted 
lines were added to the figure to show that it is formed by a 
unit square surrounded by four half-squares. 

5 .  T H E  T H R E E  COINS 

WHILE your back is turned a friend places a penny, nickel, and 
dime on the table. He arranges them in any pattern of heads 
and tails provided that the three coins are not all heads or all 
tails. 

Your object is to give instructions, without seeing the coins, 
that will cause all three to be the same (all heads or all tails). 
For example, you may ask your friend to reverse the dime. He 
must then tell you whether you have succeeded in getting all 
the coins alike. If you have not, you again name a coin for him 
to turn. This procedure continues until he tells you that the 
three coins are the same. 

Your probability of success on the first move is 1/3. If you 
adopt the best strategy, what is your probability of success in 
two moves or fewer? What is the smallest number of moves that 
guarantees success on or before the final move? 

The reader should find those questions easy to answer, but 
now we complicate the game a bit. The situation is the same as 
before, only this time your intent is to make all the coins show 
heads. Any initial pattern except all heads is permitted. As be- 
fore, you are told after each move whether or not you have suc- 
ceeded. Assuming that you use the best strategy, what is the 
smallest number of moves that guarantees success? What is 
your probability of success in two moves or fewer, in three 
moves or fewer, and so on up to the final move at which the 
probability reaches I (certainty) ? 



6. THE 25 KNIGHTS 

EITRY SQUARE of a 3-by-5 chessboard is occupied by a knight. Is 
it possible for all 25 knights to move simultaneously in such a 
nJay that at the finish all cells are occupied as before? Each move 
must be a standard knight's move: two squares in one direction 
and one square at right angles. 

7. THE DRAGON CURVE 

X I\'EIRD COVER design decorated a booklet that Tl'illiam G. Har- 
tes, the11 a candidate for a doctorate in physics at the University 
of California at Irvine, prepared for a Kational Aeronautics and 
Space Adnliilisti-ation senlinai- on group theory that he had 
taught the previous suminer at NASA's Lewis Research Center 
in Cleveland [see Figuw 991. The "dragon curve," as he calls it, 
was discovered by a NASA colleague, physicist John E. 
Heigh~va); and later analyzed by Hartei-, Heigh~vay and Bruce 
A. Banks, another NASA physicist. The curve is not connected 
wit11 group theor!; but it was used by Harter to synlbolize what 
he calls "the proliferation of cryptic structure that one finds in 
this discipline." It is dl-awn here as a fantastic path along the 
lattice lines of graph papel; \\-it11 each turn rounded 
off to make it clear that the path never crosses itself. You will see 
that the cui17e \,aguely 1-esenlbles a sea dragon paddling to the 
left ~vith claxved feet, his curved snout and coiled tail just above 
an iniaginary waterline. 

The  reader is asked to find a simple illetllod of generating 
the dragoil curve. In the answer I shall explain three: one based 
on a sequence of binai-). digits, one on a ~vay of folding paper, 
and one on a georlietric construction. It was tlle second proce- 
dure that led to the discoverv of tlle cur\.e. 
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FIGURE 99 

A "dragon curve" of the 12 th  order 



8.  THE TEN SOLDIERS 

TEN SOLDIERS, no two of them the same height, stand in a line. 
There are lo!, or 3,628,800, different ways the men can arrange 
themselves, but in every arrangement at least four soldiers will 
form a series of ascending or descending heights. If all but those 
four leave the line, the four will stand like a row of panpipes. 

You can convince yourself of this by experimenting with ten 
playing cards bearing values from ace to 10. The values repre- 
sent the height order of the soldiers. No matter haw you arrange 
the ten cards in a row, it will always be possible to pick out at 
least four cards (there may, of course, be more) in ascending or 
descending order. Suppose, for instance, you arrange the cards 
in the following order: 5, 7, 9, 2, 1, 4, 10, 3, 8, 6. The set 5, 7, 
9, 10 is in ascending order. Can you eliminate such a set by 
moving, say, the 10 to between the 7 and the 9? No, because you 
then create the set 10,9,8,6, which is in descending order. 

Let p (for panpipe) be the number of the largest set of sol- 
diers that will always be found in order in a row of n soldiers of 
n different heights, no matter how they arrange themselves. 
The problem-and it is not easy-is to prove that if n equals 
10, p equals 4. In doing so you are likely to discover the general 
rule by which the p number is easily computed for every n. 

9. A  CURIOUS SET OF INTEGERS 

THE INTEGERS 1, 3, 8, and 120 form a set with a remarkable 
property: the product of any two integers is one less than a per- 
fect square. Find a fifth number that can be added to the set 
without destroying this property. 

ANSWERS 

I. HE DEALS the bottom card to himself, then continues deal- 
ing from the bottom counterclockwise. 
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2. NORA x L = ARON has the unique solution 21 78 x 4 = 8712. 
Had Nora's middle initial been A, the unique solution would 
have been 1089 x 9 = 9801. The numbers 21 78 and 1089 are 
the only two smaller than 10,000 with multiples that are rever- 
sals of themselves (excluding trivial cases of palindromic num- 
bers such as 3443 multiplied by 1).  Any number of 9's can be 
inserted in the middle of each number to obtain larger (but 
dull) numbers with the same property; for instance, 21999978 x 
4 = 87999912. 

For a report on such numbers, in all number systems, see 
"Integers That Are Multiplied When Their Digits Are Re- 
versed," by Alan Sutcliffe, in Mathematics Magazine, Vol. 39, 
No. 5, November 1966, pages 282-87. 

Larger numbers can also be fabricated by repeating each four- 
digit number: thus, 217821782178 x 4 = 871287128712, and 
108910891089 x 9 = 980198019801. Of course numbers such 
as 21999978 may also be repeated to produce reversible num- 
bers. Leonard F. Klosinski and Dennis C. Smolarski, in their pa- 
per "On the Reversing of Digits," Mathematics Magazine, Vol. 
42, September 1969, pages 208-10, show that 4 and 9 are the 
only numbers which can serve as multipliers for reversing non- 
palindromic numbers. This can be put another way. If an in- 
teger is a factor of its reversal, the larger of the two numbers di- 
vided by the smaller must equal 4 or 9. 

The fact that 8712 and 9801 are the only four-digit numbers 
that are integral multiples of their reversals is cited by G. H. 
Hardy, in his famous Mathematician's Apology, as an example 
of nonserious mathematics. For those who are fascinated by 
such oddities, I pass along the following chart, sent by Bernard 
Gaiennie, which points up the curious relationship between the 
two numbers: 

1089 6534 
21 78 7623 
3267 8712 
4356 9801 
5445 



The nine numbers are, of course, the first nine multiples of 
1089. Note the consecutive order of the digits when you go up 
and down the columns. If the first five numbers are multiplied 
respectively by 9, 4, 2Y3, I%, and 1, the products give the last 
five numbers in reverse order. Now 1, 4, and 9 are the first 
three square numbers, but those other two multipliers, 2% and 
I%, seem to come out of left field! 

3. Figure 100 shows how as few as six dominoes can be 
placed so that if each is given a color, four colors are necessary 
to prevent two dominoes of the same color from touching along 
a border. 

FIGURE 100 
Six dominoes, four colors 

The above is the solution I provided. To my astonishment, 
two readers (Bent Schmidt-Nielsen and E. S. Ainley) found a 
way of doing it with as few as eleven monominoes (unit 
squares). Their solution is shown in Figure 101. Informal 
proofs that eleven is minimal were supplied by R. Vincent Kroli 
and W. H. Grindley. 

If we ask for the maximum number of monominoes that can 
be placed so each pair shares a common edge segment, the an- 
swer obviously is three. The question is not so easily answered 
for cubes; that is, what is the maximum number of cubes that 
can be placed so each pair shares a common surface? A common 
surface need not be an entire face, but it must be a surface, not 
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FIGURE 101 
Solution to monomino problem 

FIGURE 102 
Solution to cube 

a line or point. The answer is six. See Figure 102 for the pretty 
solution. The three cubes shown by the solid lines rest on three 
shown by dotted lines. 

4. Five spots can be placed on the figure as shown in Figure 
103 so that each pair is separated by a distance equal to the 
square root of 2 or more. There is enough leeway to allow each 
dot to be shifted slightly and therefore the number of different 
patterns is infinite. Did the reader fall into the carefully 
planned trap of thinking each spot had to fall on a vertex? 

The problem appeared in Eureka, the journal of the Archi- 
medeans, October 1966, page 19. 

FIGURE 103 

Solution to spot puzzle 



5. The best way to make the three coins all heads or all tails 
is to direct that any coin be turned, then any other coin, then 
the first coin mentioned. The probability of success on the first 
move is 1/3. If you fail, the probability is 1/2 that your second 
move will do the trick. It might be supposed that the sum of 
those two probabilities is the chance of success in two moves or 
fewer, but this is incorrect. One must examine the effect of the 
first two moves on each of the six equally possible initial pat- 
terns, HHT,  H T H ,  H T T ,  T H H ,  T H T ,  T T H .  The symmetry 
allows one to pick any two coins for the first two moves. There 
is success in four cases, so that the chance of success on or before 
the second move is four out of six, or 2/3. 

Seven moves guarantees success if the intent is to make all 
the coins heads. Of the eight possible starting patterns, only 
HHH is ruled out. You must therefore run through seven pat- 
tern variations to make sure you hit HHH somewhere along 
the line. An easily remembered strategy, suggested by Samuel 
Schwartz, is to label the coins 1, 2, 3 and take them in the order 
1,2, 3, 2, 1, 2, 3. The probability of success on the first move is 
117, on or before the second move it is 217, and so on up to 717, 
or I,  on or before the seventh move. 

If the number of coins is n,  the required number of moves 
clearly is 2" - I. The sequence of moves corresponds to the 
sequence of numbers in a binary Gray code. (On Gray codes, 
see my Scientific American column for August 1972.) Rufus 
Isaacs and Anthony C. Riddle each analyzed the situation as a 
competitive game. The player who hides the coins tries to maxi- 
mize the number of moves, and the player who searches for 
the pattern tries to minimize the number of moves. The hider's 
best strategy is to pick randomly one of the seven possible states 
of the three coins. The searcher's best strategy is to label the 
corners of a cube with binary numbers 1 through 8, as ex- 
plained in the August 1972 column, then draw a Hamiltonian 
path on the cube's edges. The sequence of moves corresponds 
to the sequence of binary numbers obtained by starting at the 
corner corresponding to 111 or 000, choosing with equal prob- 
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ability one of the two directions along the path, then traversing 
the path. If both players play optimally, the expected number 
of moves is four. 

The general problem, given in terms of n switches that 
turn on a light only when all switches are closed, appeared in 
American Mathematical Monthly, December 1938, page 695, 
problem E319. For the general theory of search games of this 
type, see Rufus Isaacs, Differential Games (Wiley, 1965), pages 
345 f. 

6. The 25 knights cannot simultaneously jump to different 
squares. This is easily proved by a parity check. A knight's 
move carries the piece to a square of a different color from that 
of the square where it started. A 5-by-5 chessboard has 13 
squares of one color, 12 of another. Thirteen knights obviously 
cannot leap to 12 squares without two of them landing on the 
same square. The proof applies to all boards with an odd num- 
ber of squares. 

If rooks are substituted for knights, but limited to a move of 
one square, the same impossibility proof obviously applies. It 
would also apply, of course, to any mixture of knights and such 
rooks. 

7. Each dragon curve can be described by a sequence of bi- 
nary digits, with 1's standing for left turns and 0's for right 
turns as the curve is traced on graph paper from tail to snout. 
The formula for each order is obtained from the formula for the 
next lowest order by the following recursive technique: add 1, 
then copy all the digits preceding that 1 but change the center 
digit of the set. The order-1 dragon has the formula 1. In this 
case, after adding a 1 there is only one digit on the left, and 
since it is also the "center" digit we change it to 0 to obtain 110 
as the order-2 formula. To get the order-3 formula add 1, fol- 
lowed by 110 with the center digit changed: 1101 100. Higher- 
order formulas are obtained in the same way. It  is easy to see 
that each dragon consists of two replicas of dragons of the next 



lowest order, but joined head to head so that the second is drawn 
from snout to tail. 

Figure 104 shows dragon curves of orders 0 to 6. All dragons 
are drawn from tail to snout and are here turned so that each is 
swimming to the right, the tips of his snout and tail touching 
the waterline. If each 1 is taken as a symbol of a right turn in- 
stead of a left and each 0 as a left turn, the formula produces 
dragons that face the opposite way. The spots on each curve cor- 
respond to the central 1's in the formulas for the successive or- 
ders from 1 to the order of the curve. These spots, on a dragon of 
any order, lie on a logarithmic spiral. 

The dragon curve was discovered by physicist John E. Heigh- 
way as the result of an  entirely different procedure. Fold a sheet 
of paper in half, then open it so that the halves are at right an- 
gles and view the sheet from the edge. You will see an  order-1 
dragon. Fold the same sheet twice, always folding in the same 
direction, and open it so that every fold is a right angle. 'The 
sheet's opposite edges will have the shapes of order-2 dragons, 
each a mirror image of the other. Folding the paper in half 
three times generates an  order-3 dragon, as illustrated in Figure 
105. In  general n folds produce an order-n dragon. 
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FIGURE 104 

Sea dragons of orders 0 to 6, with their binary formulas 

FIGURE 105 
Threc folds generate an order-3 dragon 



The binary formula can be applied, of course, to the folding 
of a strip of paper (adding-machine tape works nicely) into 
models of higher-order dragons. Let each 1 stand for a "moun- 
tain fold," each O for a "valley fold." Start at one end of the 
strip, making the folds according to the formula. When the 
strip is opened until each fold is a right angle, it will have 
the shape of the dragon corresponding to the formula you used. 

Physicist Bruce A. Banks discovered the geometric construc- 
tion shown in Figure 106. I t  begins with a large right angle. 
Then at each step each line segment is replaced by a right angle 
of smaller segments in the manner illustrated. This is analogous 
to the construction of the "snowflake curve," as explained in my 
Sixth Book of Mathematical Games from Scientific American, 
Chapter 22. The reader should be able to see why this gives the 
same result as paper folding. 

William G. Harter, the third of the three physicists who first 
analyzed the dragon curve, has found a variety of fantastic 
ways in which dragons can be fitted together snugly, like pieces 

FIGURE 106 

Geometric method 
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FIGURE 107 
Four order-6 dragons joined at their tails 

of a jigsaw puzzle, to cover the plane or to form symmetrical 
patterns. They can be joined snout to snout, tail to tail, snout 
to tail, back to back, back to abdomen, and so on. Figure 107 
shows a tail-to-tail-to-tail-to-tail arrangement of four right- 
facing order-6 dragons. If the reader wishes to produce an eye- 
dazzling pattern, let him fit together in this way four order-12 
dragons like the one shown in Figure 99. If the four curves are 
each infinite in length, they completely fill the plane in the 
sense that every unit edge of the lattice is traversed exactly 



once. For dragon-joining experiments it is best to draw your 
dragons on transparent paper that can be overlapped in various 
ways. 

Donald E. Knuth, a Stanford University computer scientist, 
and Chandler Davis, a University of Toronto mathematician, 
have made the most extensive study of dragon curves. Their 
two-part article "Number Representation and Dragon Curves" 
(Journal of Recreational Mathematics, Vol. 3, April 1970, 
pages 66-81, and Vol. 3, July 1970, pages 13349) is filled with 
material on ways of obtaining the dragon-curve sequence, vari- 
ations and generalizations of the curve, and its properties. See 
also the article by Knuth and his wife, Jill, in the same journal, 
Vol. 6, Summer 1971, pages 165-67, which describes how they 
used three types of ceramic tiles to cover a wall of their house 
with an order-9 dragon. 

8. If n soldiers of differing height stand in a row, at least p 
soldiers will be in either ascending or descending order. The 
number p is the square root of the smallest perfect square that 
is not less than n. 

To prove this, label each soldier with a pair of letters, a and d. 
Let a be the maximum number of men on the soldier's left, in- 
cluding himself, who are in ascending height order. (By "left" 
I mean to your right as you face the row of soldiers.) Let d be 
the maximum number on his left, including himself, in de- 
scending order. It is easy to show (this is left to the reader) that 
no two soldiers can have the same pair of numbers. Their a 
numbers or their d numbers may be the same, but not both. 

Assume that 10 soldiers are so arranged that their largest 
subset in ascending or descending order has p members, the 
lowest possible. No soldier can have an a or a d number greater 
than p. Since no two soldiers have identical pairs of a and d 
numbers, p must be large enough to provide at least 10 different 
pairs of a and d numbers. 

Can p equal 37 No, because this provides only 32 = 9 pairs of 
numbers: 
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Any number p will provide p2 pairs of a and d numbers. Since 
32 is 9, we do not have enough pairs to associate with the 10 
soldiers. But 42 is 16, more than enough. We conclude that no 
matter how 10 soldiers arrange themselves, at least four must 
be in order. Four remains the p number for sets of soldiers up 
to and including 16. But 17 soldiers have a p number of 5 be- 
cause we have to go to the next-highest p number to find 
enough a and d number pairs. 

If 100 soldiers of different heights stand in a row, it is not 
possible for less than 10 to be in panpipe order. But add one 
more soldier and the p number jumps to 11. 

A good discussion of the problem appears in Section 7 of 
"Combinatorial Analysis," by Gian-Carlo Rota, in The Mathe- 
matical Sciences, a collection of essays edited by the National 
Research Council's Committee on Support of Research in the 
Mathematical Sciences (M.I.T. Press, 1969). For generaliza- 
tions and extensions of the problem see two articles: "Monotonic 
Subsequences," by J. B. Kruskal, Jr., in Proceedings of the 
American Mathematical Society, Vol. 4, 1953, pages 264-74, 
and "Longest Increasing and Decreasing Subsequences," by 
Craige Schensted, in Canadian Journal of Mathematics, Vol. 13, 
1961, pages 179-91. 

9. The fifth number is 0. The answer is, of course, trivial 
and intended as a joke. However, a difficult question now arises: 
Is there a fifth positive integer (other than 1, 3, 8, 120) which 
can be added to the set so that the set retains the property that 
the product of any two members is one less than a perfect 
square? 

This unusually difficult Diophantine problem goes all the 
way back to Fermat and Euler. (See L. E. Dickson, History of 



the Theory of Numbers, Vol. 2, pages 51 7 f.) The problem has 
had an interesting history and was not finally settled until 
1968. A student of C. J. Bouwkamp, at the Technological Uni- 
versity, Eindhoven, Holland, saw the problem in Scientific 
American, mentioned it to Bouwkamp, who in turn gave it to 
his colleague J. H. van Lint. In  1968 van Lint showed that if 
120 could be replaced by a positive integer, without destroying 
the set's property, the number would have to be more than 
1,700,000 digits. Alan Baker, of Cambridge University, then 
combined van Lint's results with a very deep number theorem 
of his own, and finally laid the problem to rest. In a paper by 
Baker and D. Davenport, Quarterly Journal of Mathematics, 
second series, Vol. 78, 1969, pages 129-38, it is proved that 
there is no replacement for 120, and of course it follows that 
there can be no fifth member of the set. The proof is compli- 
cated, involving the calculation of several numbers to 1,040 
decimal places. 

It is known that there is an infinity of sets of four positive inte- 
gers with the desired property, of which 1, 3, 8, and 120 has the 
smallest sum. You will find twenty other solutions listed in a dis- 
cussion of the problem by Underwood Dudley and J. H. Hunter 
in Journal of Recreational Mathematics, Vol. 4, April 1971, 
pages 145-146. A simpler proof that there is no fifth number for 
the 1, 3, 8, 120 set is given by P. Kanagasabapathy and Th. 
Ponnudurai in a paper published in The Quarterly Journal of 
Mathematics, Vol. 3, No. 26, 1975, pages 275-278. The prob- 
lem is also the topic of "A Problem of Fermat and the Fibonacci 
Sequence," by V. E. Hoggatt, Jr., and G. E. Bergum, in The 
Fibonacci Quarterly, Vol. 15, December 1977, pages 323-330. 

Is there a set of five positive integers with the desired prop- 
erty? As far as I know, this remains unanswered. 
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Colored Triangles 
and Cubes 

IN 1967 Franz 0. Armbruster, a California computer program- 
mer, redesigned a tantalizing little puzzle that has been mar- 
keted in dozens of different forms for more than half a cen- 
tury. He packaged it cleverly and inexpensively with brief, 
witty instructions and called it Instant Insanity. It was an in- 
stant success. Parker Brothers took it over and in 1968 its sales 
were astonishing. The puzzle consists of nothing more than four 
plastic cubes, all the same size, each face bearing one of four 
colors. The problem is simply to arrange the cubes in a straight 
row so that all four colors appear on each of the row's four sides. 

I had mentioned this puzzle in a chapter, "The 24 Color 
Squares and the 30 Color Cubes," in New Mathematical Diver- 
sions from Scientific American (1966), but the puzzle's most 
complete analysis is to be found in Chapter 7 of Puzzles and 
Paradoxes (1965) by the Glasgow mathematician Thomas H. 
O'Beirne. O'Beirne calculated the probability of solving the 
puzzle by chance as one in 41,472 random tries! He wrote that 
the most tantalizing feature of the Tantalizer, as it was called 
in one of its most recent incarnations, is that it "can be brought 
out again and again, with trivial variations, while many other 



good puzzles appear once and vanish, or circulate only pri- 
vately, if at all!" 

Instant Insanity can be considered one of a huge general class 
of combinatorial problems in which regular polygons or poly- 
hedrons with their edges or faces colored or distinguished by 
numbers or other symbols are to be fitted together under certain 
restraints to achieve specified results. One of the pioneering au- 
thorities on combinatorial mathematics, Major Percy Alexan- 
der MacMahon, who died in 1929, devoted a great deal of 
thought to such puzzles. MacMahon, a professor of physics and 
a mathematician, was the author of the classic two-volume Com- 
binatory Analysis ( 191 5 ,  191 6) and an excellent introductory 
article on the same topic for the eleventh edition of the Ency- 
clopaedia Britannica. He also wrote a little-known and long- 
out-of-print book called New Mathematical Pastimes (1921), 
in which he explored a large variety of puzzles of the general 
type characterized here. 

In my chapter on the 30 color cubes (a remarkable set of 

FIGURE 108 
The 24 color triangles 
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cubes discussed by MacMahon in New Mathematical Pastimes) 
I also dealt with MacMahon's two-dimensional set of 24 color 
squares. This chapter introduces MacMahonYs companion set of 
24 color triangles. If the three edges of an equilateral triangle 
are each colored with one of two colors, and if rotations of tri- 
angles are not considered different, a set of four triangles re- 
sults. Three colors produce a set of 11 distinct triangles and four 
colors the set of 24 triangles shown in Figure 108. To work 
with such a set, cut from cardboard, it is convenient to divide 
each triangle into three identical triangular parts as shown and 
then color each part, using four contrasting colors for the four 
differently labeled regions. Because triangles are not to be 
turned over (the set includes mirror-image pairs), only one side 
of the cardboard should be colored. 

The formula for the number of different equilateral triangles 
that can be produced in this way, given n colors, is 



When n = 3, the resulting set of 11 triangles is small and will 
not form any interesting shapes. When n = 5, the set of 45 
triangles is a little too large for recreational purposes. The set 
of 24, using four colors, is just about right; moreover, its pieces 
will form a regular hexagon as well as an unusually large num- 
ber of different symmetrical shapes. MacMahon gives many 
combinatorial problems connected with this set. The simplest 
problems treat the pieces as triangular "dorninoes" to be fitted 
together with adjacent edges matching in color to form symmet- 
rical polygons. To this he adds a second restriction: the entire 
border of the polygon must be the same color. (Henceforth 
these will be referred to as MacMahon's two provisos.) Since 
each color appears in the set on 18 edges (an even number) and 
since the contact proviso requires that the color appear within 
a polygon on an even number of edges, it follows that the pe- 
rimeter of any shape solvable under the two provisos must have 
a border composed of an even number of edges. 

Wade E. Philpott, a retired engineer who lives in Lima, Ohio, 
has done more work on this set of MacMahon color triangles 
than anyone else I know of. What follows is taken from my cor- 
respondence with him and is presented here with his permis- 
sion. 

I t  is not hard to prove that all polygons formed by the 24 
color triangles under MacMahon's two provisos must have pe- 
rimeters of 12, 14, or 16 unit edges. The perimeter, as we have 
seen, must have an even number of edges. The minimum-length 
perimeter of a polygon formed by putting together 24 unit tri- 
angles is 12. A perimeter of 18 is impossible because there are 
only 18 edges of a given color in the set and the solid-color tri- 
angle cannot contribute all three of its edges to a polygon. 
Therefore 16 is the maximum length of the perimeter of a solv- 
able polygon. 

Only one polygon, the regular hexagon, has the minimum pe- 
rimeter of 12. Its one-color border can be formed in six different 
ways, each with an unknown number of different solutions. 
Philpott estimates the total number of solutions as several thou- 
sand. (This does not include rotations and reflections as differ- 
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ent, or new solutions obtained simply by interchanging colors.) 
Philpott has discovered that for each type of border the hexagon 
can be solved with the three triangles of solid color (necessarily 
differing in color from the border) placed symmetrically around 
the center of the hexagon. Since each solid-color triangle must 
be surrounded by triangular segments of the same color, the 
result is three smaller regular hexagons of solid color situated 
symmetrically within the larger hexagon. Figure 109 shows the 
general schemata for the six different ways of making the one- 
color border, with the solid-color triangles symmetrically placed 
at the hexagon's center in one of two possible ways. The reader 
may enjoy trying to construct a hexagon for each of the six 
patterns. 

The 24 triangles will form two kinds of parallelogram: 2 X 6 
and 3 x 4. It is easy to prove that the 2 x 6 cannot meet Mac- 
Mahon's two provisos: the parallelogram has 14 triangles that 
contribute an edge to its perimeter, but only 13 triangles bear 
the same color. The 3 x 4 parallelogram is solvable. Again, the 
total number of solutions is not known, although Philpott 
guesses it is less than for the regular hexagon. Like the hexagon, 
it has six different types of border. Figure 110 shows a solution 
by Philpott for each type, each with the three solid-color trian- 
gles (necessarily differing from the border color) arranged in a 
row. 

The 3 x 4 parallelogram is an example of a symmetrical 
shape with a perimeter of 14 unit edges. Philpott has found 18 
polygons with 14-edge perimeters that possess symmetry, either 
reflectional or rotational, or both, and that are solvable under 
MacMahon's two provisos. The 18 are reproduced in Figure 
11 1. All have more than one solution. It is easy to see that to be 
solvable a 14-edge polygon must have at least one "point" (a 
60-degree corner) because at least one triangle with adjacent 
edges of the same color must contribute both of those edges to 
the perimeter. Note that only one of the 18 figures (the first 
one) has a single point. This is also one of 11 symmetrical 
shapes of 14 or 16 edges for which there is only one type of 
one-color perimeter. Shape 5 is also of special interest. Accord- 



FIGURE 109 
The six types of border for a regular hexagon 
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FIGURE 110 
A solution for each type of border for the 3 X 4 parallelogram 



ing to Philpott, it is the only symmetrical pattern that has 11 
kinds of one-color border (the maximum possible). Solutions 
are known for each of these 11 forms. 

Philpott found 42 solvable symmetrical shapes with 16-edge 
perimeters [see Figwe 1121, making a total of 61 solvable sym- 
metrical polygoiis in all. He reports that all solvable 16-edge 
polygons must have at least three points and iiot more than 
foul: Not all three-point syinmetrical shapes are solvable, but all 
four-point shapes are. 

The "duplication problem," proposed by Philpott, is to form 
t~vo identical symmetrical shapes, of 12 triangles each, that 
meet MacMahon's t~vo provisos and have borders of solid colors 
which iiecessarily differ. Figure 113 sho~is one of the 23 known 
solvable shapes. Philpott estimates the nuinber of different 
solutions for each shape to be in the hundreds, not thousands. 

Philpott's "triplication problem" is to use the 24 triangles to 
form three identical symmetrical shapes, of eight triangles each, 
with perimeters of three colors. It has been proved, he reports, 

FIGURE 1 1  1 
The 18  solvable sjmmetrzcal poljgons 

wztlz 14-edge pe?-z~nete?-s 
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that there are just ten such shapes. They are reproduced in Fig- 
ure 114 with a solution for one of them. Philpott estimates the 
number of solutions for each to be less than 100. 

Six triangles will form 12 different shapes, not all symrnet- 
rical, that are known as hexiamonds. (See Chapter 18 of my 
Sixth Book of Mathematical Games from Scientific American.) 
All hexiamonds except the "butterfly," Philpott has found, can 
be quadrupled. 

John Harris, of Santa Barbara, California, suggested the 
problem of constructing hexagons with a minimum or a maxi- 
mum number of isolated "diamonds." (A diamond is formed by 
two tiles with meeting edges of the same color.) I t  is easy to 
show that there must be at least one such diamond and not more 
than nine. Solutions, not unique, exist for both cases. Nine dia- 
monds, Harris found, are possible on the 3 x 4 parallelogram, 
with many solutions. The parallelogram may be formed with 
no diamonds, again with many solutions. 

What complete sets of MacMahon triangles will form an 



FIGURE 112 
The 42 solvable symmetrical polygons with 16-edge perimeters 

solution to aduplication problem 
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FIOURE 114 
The 10 symmetrical polygons that can be triplicated, 

one of them solved 



equilateral triangle that meets the two color provisos? Before 
answering this we must first determine what sets will form 
equilateral triangles without the provisos. Letting n be the 
number of colors in a complete set, and m2 the number of tiles, 
the set will form an equilateral triangle only for values of n 
which satisfy the following Diophantine equation: 

How many integral solutions does the equation have? Phil- 
pott published this as a problem in the Journal of Recreational 
Mathematics, Vol. 4, April 1971, page 137. A partial answer 
appeared in Vol. 5, January 1972, pages 72-73. There is a fin- 
ite number of solutions of which the smallest are n = 1, 2, and 
24, and no other solutions for n less than 5,000. 

A single triangle ( n  = 1) meets both color provisos trivially, 
and when n = 2 it is obvious that the complete set of m2 = 4 
tiles will not meet the border proviso. When n = 24, the m2 = 
4,624 tiles form a triangle of 68 units on the side. Will they also 
meet the two provisos? Probably, but this has not yet been dem- 
onstrated. 

George Littlewood, of Manchester, England, proved that the 
triangles in a complete MacMahon set would make a regular 
hexagon only when n = 4. This follows from the fact that 

has an integral solution only when n = 4. As we have seen, it is 
possible to form such hexagons and meet the two color provisos. 
Excluding rotations, reflections, and color permutations, how 
many such hexagons are there? This is not yet established. Phil- 
pott estimates the number to be several thousand. 

A set of 45 tiles for the set of five-color triangles (edges 
marked with zero, one, two, three, or four black spots instead 
of colors) was marketed in West Germany in the late 1960's 
under the name of Trimino. The boxed set included a booklet 
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by Heinz Haber giving symmetrical shapes to be made by the 
pieces and instructions for playing a competitive game. The set 
includes, of course, the 24 four-color triangles as a subset. A 
similar set was imported into the United States from Hong 
Kong as a game called Three Dimensional Dominoes. Although 
sets of the 24 four-color triangles alone have surely been mar- 
keted from time to time, the first such set I can document is a 
magnetized pocket set made in London by Just Games, Ltd., 
that I saw advertised in 1975. 

In 1892 MacMahon obtained British patent No. 3,927 on his 
set of 24 four-color triangles, but I do not know if they were 
ever marketed. In  the United States, in 1895, a set of four-color, 
edge-colored triangles was patented (No. 331,652) by F. H. 
Richards, of Troy, New York. However, Richards describes 
their use only in playing domino-type games. Various domino 
games using edge-colored triangles have been sold in this coun- 
try, notably Contack (Parker Brothers, 1939) and Al-lo-co, put 
out by a Cleveland firm in 1964. 

Instead of coloring edges, each colored edge can be replaced 
by one of four types of symmetrically shaped edge. This was 
proposed by MacMahon as a way of transforming his color tri- 
angles into equivalent jigsaw puzzles. [See Figure 115.1 

MacMahon's book does not consider triangles colored at their 
corners instead of edges. The number of such triangles, for 
each value of n, is the same as when they are edge-colored. Will 
a set of 24 four-color, corner-colored triangles form a hexagon 
with the single proviso that corners of like colors meet at every 
vertex? Unfortunately, no. Nor is it possible to make an equi- 
lateral triangle with a symmetrically placed triangular "hole," 
although it can be made if the vacancy is at a corner or the cen- 
ter of a side. The set will, however, make a 3 x 4 parallelogram 
as well as many other symmetrical shapes. 

In 1969 Marc Odier, of Paris, designed a set of 24 four-color, 
corner-colored triangles which were made and sold in France 
as the game of Trioker. The game is protected by British patent 
No. 1,219,551. It includes a set of patterns to be solved, and in- 
structions for a competitive game. A 25th tile of two colors, 



FIGURE 115 
Jigsaw puzzle using triangles made with four different edges 

called the Joker, is sometimes used for both patterns and the 
game. More recently Trioker has been marketed in Spain. In 
1976 a 207-page book on recreations with this set of tiles, Sur- 
prenants Triangles, by Odier and Y. Roussel, was published in 
France by CEDIC. A game using four-color, corner-colored tri- 
angles called Tri-ominoes, made by Pressman, was on sale in the 
United States in 1968. 

In  three dimensions the cube is the only regular solid repli- 
cas of which will fit together to fill space. This surely is one 
reason for its being used in so many different combinatorial 
puzzles of the Instant Insanity type. If the reader will obtain 
27 identical cubes (alphabet blocks will do) and paint 9 one 
color (on all sides), 9 another color, and 9 a third color, he will 
have the material for working on two unusual three-dimen- 
sional combinatorial problems. 
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It is obviously impossible to form the 27 cubes into a single 
3 x 3 x 3 cube so that each of its 27 orthogonal rows (rows 
parallel to an edge of the large cube) consists of three cubes of 
the same color. Can they form a cube in which all three colors 
appear on each of the 27 orthogonal rows? They can; a unique 
solution (not counting rotations, reflections, or permutations of 
colors as different) was discovered by Charles W. Trigg, a re- 
tired California mathematician. Can the reader rediscover it? 

The second problem, much more difficult, was recently in- 
vented by the Cambridge mathematician John Horton Conway. 
Conway set himself the task of forming the 3 x 3 x 3 cube so 
that every row of three (the cube's 27 orthogonal rows, its 18 
diagonal rows on the nine square cross-sections, and its four 
space diagonals that join opposite corners) contains neither 
three cubes of like color nor three of three different colors. In 
other words, each of the 49 straight rows of three cubes will con- 
sist of two cubes of one color and one of another. Conway found 
two distinct but closely related solutions (again not counting ro- 
tations, reflections, or permutations of colors). 

One can, of course, work on both problems by drawing three 
ticktacktoe boards to represent the three levels of the large cube 
and labeling the 27 cells properly with nine A's, nine B's, and 
nine C's. It is easier and more fun to work with actual cubes, 
however, and well worth the trouble of acquiring and coloring 
a set, even if it is only a set of crayoned sugar cubes. 

A N S W E R S  

FIGURE 116 shows one way of forming the hexagon with the 
24 color triangles for each of the six possible varieties of one- 
color border, with the added proviso that the three solid-color 
triangles be placed symmetrically around the center in the 
manner shown. It is not known how many solutions there are 
for each of these six types. 

Figure 11 7 gives the unique solution (not counting rotations, 
reflections, or permutations of colors as different) for forming 
a 3 X 3 X 3 cube with 27 unit cubes, nine of each of three colors, 



FIGURE 116 
Six solutions to the hexagon problem 
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so that each of the 27 orthogonal rows contains a cube of each 
color. The solution was published by Charles W. Trigg in 
Mathematics Magazine, January 1966. 

Figure 118 shows the only two ways, both found by John 
Horton Conway, of arranging the same set of 27 cubes into a 
3 x 3 x 3 cube so that each of its 49 straight rows of three 
(orthogonal and diagonal, including the cube's four space diag- 
onals connecting opposite corners) contains neither three cubes 
of the same color nor three cubes of three different colors. 

FIGURE 117 
Solution to first cube problem 

FIGURE 118 
Two solutions to the second cube problem 
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Trees 

A L L ~ ~ ~ ~ ~ ~ ~ ~ ~  GRAPH" is a set of points (vertices) joined by 
line segments (edges) in such a way that a path can be found 
from any point to any other point. If there are no circuits, or 
paths leading from a point back to the same point, a connected 
graph is called a "tree." In nature the tree itself is of course a 
splendid three-dimensional model, and there are also crystals 
that grow in a similar manner. Rivers and their tributaries 
sprawl over the earth's surface in gigantic tree diagrams. Cer- 
tain brittle solids crack in such a way that the break, examined 
under a microscope, shows a beautiful treelike pattern. Electric 
discharges sometimes branch like trees. 

The simplest tree graph is a line connecting two points. 
Three points also join in only one way to form a tree, but four 
points can be connected in two topologically distinct trees. Five 
points yield a "forest," or set, of three trees and six points can 
be connected in six trees [see Figure 1191. The placing of the 
points and the shapes of the edges are irrelevant because only 
topological properties are used here as distinguishing features; 
think of the diagrams as being formed of identical balls joined 
by elastic bands. These are called "free trees" as opposed to 
"rooted trees," in which one point is distinguished from all 
others, or "labeled trees," in which all points are distinguished. 



POINT! TREES 

FIGURE 119 

Topologically distinct trees of two to six points 



FIGURE 120 
Twelve seven-point trees, two of which are twins 

There are still other types of trees for which there is as yet 
no standard nomenclature. The problem of calculating the num- 
ber of distinct n-point trees of a given type gets into complex 
combinatorial theory. There are I1 free trees with seven points, 
and then the series continues 23, 47, 106, 235, 551, ., . . A 
dozen seven-pointers are shown in Figure 120 but two are du- 
plicates. Can you find the twins? Can you draw the 23 eight- 
pointers? 

It is obvious that every tree of n points has n - I edges, and 
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a forest of n points and k trees has n - k edges. Another obvious 
theorem is illustrated by a scene in L. Frank Baum's fantasy 
T h e  Magical Monarch of Mo  and His People. An apple on a 
high branch cannot be reached by climbing the tree because 
someone has sawed off part of the trunk, near the branch, to use 
for kindling. The theorem: Removal of  any edge from a tree 
graph disconnects the gaph .  Even a terminal edge, if it is re- 
moved, leaves its terminal point stranded. 

Investigations of the properties of tree graphs did not get 
under way until the late nineteenth century, but of course the 
diagram was in use in ancient times. It is a handy way to show 
all kinds of relations-genealogical ones, for instance-and for 
dividing a subject matter into hierarchic categories. One of the 
most ubiquitous tree graphs in medieval metaphysics was pro- 
posed in a commentary on Aristotle by Porphyry, a third-cen- 
tury Neoplatonist and opponent of Christianity. In essence the 
Tree of Porphyry is what is now called a "binary tree." Cate- 
gories are split into two mutually exclusive and exhaustive 
parts on the basis of a property possessed by one part but not 
the other. (See Plato's Phaedrus.) Substance, the summum 
genus, divides into the corporeal and the incorporeal, the corpo- 
real into the living and the nonliving. The living divides into 
the sensible (animals) and the insensible (plants). Animals 
divide into the rational (man) and the nonrational; the rational 
in turn splits into individual persons, the infama species of the 
tree. After the invention of engraving Renaissance philosophers 
liked to publish fantastically branched and elaborately dec- 
orated diagrams of the Porphyrian tree. 

Petrus Ramus, the French Protestant logician killed in 1572 
in the Massacre of St. Bartholomew's Day, was obsessed by this 
kind of exhaustive division and applied the binary tree to so many 
topics that it was thereafter known as the Tree of Ramus. Jer- 
emy Bentham, in the early nineteenth century, was perhaps 
the last important philosopher to take the binary tree quite so 
seriously. Although he realized that a complete Ramean tree 
was unwieldy in many areas (for example, botany!) and that, 



like an apple, a category can often be halved in thousands of 
different ways, he was convinced that dichotomous division was 
one of the great tools of analysis. He wrote of the "matchless 
beauty of the Ramean tree," and headed a section of one essay 
"How to plant a Ramean encyclopedical tree on any given part 
of the field of art and science." 

Philosophers today (aside from those working in formal 
logic) have little use for tree diagrams, but mathematicians and 
scientists have found applications for them in such diverse fields 
as chemical structure, electrical networks, probability theory, 
biological evolution, operations research, game strategy, and 
all kinds of combinatorial problems. The most striking example 
I know of the unexpected applicability of tree diagrams to a 
combinatorial problem (in this case a game of card solitaire) 
is given in a discussion of tree theory in Donald E. Knuth7s book 
Fundamental Algorithms. 

The solitaire game is best known as "clock," although it also 
goes by such names as "travelers," "hidden cards," and "four 
of a kind." The pack is dealt into thirteen face-down piles of four 
cards each, the piles arranged as shown in Figure 121, left, to 
correspond to the numbers on a clock face. The thirteenth 

6 6 

FIGURE 121 

Starting position for Bottom cards and their 
clock solitaire tree connections 
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(king) pile goes in the center. Turn over the top card of the 
king pile, then slide it face up under whichever pile corresponds 
to the card's value. For example, if it is a four, put it under the 
four o'clock pile; if a jack, under the eleven o'clock pile, and 
so on. Now turn up the top card of the pile under which you 
just placed the card and do the same thing with the new card. 
The play continues in this way. If you turn a card that matches 
the pile it is in, slide it face up under that pile and turn the next 
top card. The game is won if you get all fifty-two cards face up. 
If you turn a fourth king before this happens, the play is 
blocked and the game lost. 

Playing clock is purely mechanical, demanding no skill. 
Knuth proves in his book that the chances of winning are ex- 
actly 1/13 and that in the long run the average number of cards 
turned up per game is 42.4. I t  is the only known card game, 
given in popular books on solitaire, for which the probability 
of winning has been precisely calculated. 

Knuth also discovered a simple way to know in advance, 
merely by checking the bottom card of each pile, whether the 
game will be won or lost. Draw another clock-face diagram, but 
this time indicate on each pile the value of the bottom card of 
that pile-except for the center, or king, pile, the bottom card 
of which remains unknown. Now draw a line from each of the 
twelve bottom-card values to the pile with the corresponding 
number [see Figure 121, right]. (No line is drawn if the card's 
value matches its own pile.) Redraw the resulting graph to re- 
veal its tree structure [see Figure 1221. If and only if the graph 
is a tree that includes all thirteen piles will the game be won. 
The arrangement of the forty unknown cards is immaterial. 

The illustrated game, as the tree graph reveals, will be won. 
The reader is invited to draw a similar diagram for another 
starting position [see Figure 1231 to determine whether it is a 
win or loss, and then to check the result by actually playing the 
game. A proof that the tree test always works will be found in 
Knuth's book. In addition to being the introductory volume of 
what will surely be a monumental survey of computer science, 



FIGURE 122 
Card connections as a tree diagram @ 

it is crammed with fresh material that is of great interest to rec- 
reational mathematicians. 

A tree that catches all of a set of points is said to be a "span- 
ning tree" for those points. One of the earliest theorems in tree 
theory was the discovery, by the nineteenth-century Cambridge 
mathematician Arthur Cayley, that the number of different 
spanning trees for n labeled points is n raised to the power of n 
- 2. (Cayley was one of the founders of tree theory, which he 
developed in 1875 as a method of calculating the number of 
different hydrocarbon isomers.) Suppose there are four towns, 
A, B, C, and D. If we join them with a spanning tree, in how 
many different ways can it be done? Cayley's formula gives 9, 
or 16 [see Figure 1241. There are topological duplications, but 
because the vertices (towns) are distinguished we count each as 
being different. Where crossings occur one edge is shown going 
under the other to make it clear that the crossing is not another 
vertex; otherwise the tree would be a five-point tree. 

Suppose n towns are to be joined by a railroad network con- 
sisting of straight track segments connecting pairs of towns. 
Tracks may cross, but if so the crossings must not be taken as 
new vertices; that is, they are not points at which a traveler can 



FIGURE 123 

Bottom cards to be treed 

transfer from one track to another. By what procedure can you 
find a spanning graph that has the smallest total length? 

It  is easy to see that the minimum graph is a tree. Otherwise 
it would contain a circuit, in which case the graph's length 
could be made shorter by the removal of one edge, breaking the 
circuit but leaving all towns still connected. Since any circuit 
can be eliminated, shortening the graph, the minimum graph 
will be a tree. 

There are several simple algorithms (procedures) for finding 
a minimum-length spanning tree. The standard procedure 
(first given by Joseph B. Kruskal, "On the Shortest Spanning 
Subtree of a Graph and the Traveling Salesman Problem," Pro- 
ceedings of the American Mathematical Society, Vol. 7, Febru- 
ary 1956, pages 48-50) is as follows. Determine the distance 
between each pair of towns, then label these distances in in- 
creasing order of length. The shorted is 1, the next shortest 2, 
and so on. If two distances are equal it does not matter which is 
numbered first. Draw a straight line between the two towns 
separated by distance 1. Follow with similar straight lines be- 
tween pairs of towns with distances 2, 3, 4, and so on. Never 
add an edge that completes a circuit. If drawing a line produces 
a circuit, ignore that pair of towns and go on to the next-higher 



FIGURE 124 
The 16 labeled trees that span four points 
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distance. The final result is a spanning tree of minimum length. 
There may be other spanning trees of the same length but 
"Kruskal's algorithm" is sure to construct one of them. 

Minimum spanning trees have many interesting properties 
that are not difficult to prove. The edges intersect only at ver- 
tices, for example, and no vertex need have more than five edges 
meeting it. 

The "economy tree problem," as this is sometimes called, 
should not be confused with the "traveling salesman problem," 
a famous unsolved problem of graph theory. In that problem 
one seeks the shortest circuit enabling a salesman to visit every 
town once and only once and return to his starting town. There 
are good computer algorithms for finding close approximations 
to the shortest circuit when the number of towns is large, but 
there is no absolutely accurate general procedure except the te- 
dious testing of all possible routes. 

If one is allowed to join towns by trees that contain new ver- 
tices, then the shortest tree is called a Steiner tree. For example, 
what is the shortest railroad connecting four towns at the cor- 
ners of a square? Assume that the square's side is one mile. 
Remember, the minimal spanning tree in this case may contain 
one or more additional vertices; it need not be a four-point tree. 
If the reader succeeds in finding this tree, he can try the more 
difficult problem of determining the minimal-length Steiner 
tree joining the five corners of a regular pentagon. 

A N S W E R S  

IN THE ILLUSTRATION of free trees with seven points, the two 
duplicates are trees 5 and 8. The second starting position for 
clock solitaire is a loss. Its graph is not a tree; not only is it dis- 
connected but also one part contains a circuit. 

Figure 125 shows how to draw minimal-length Steiner trees 
joining the corners of a square and of a regular pentagon. The 
dotted angles are 120 degrees. It might be thought that the two 
diagonals of a square would provide an "economy tree" (length 
2*= 2.828+) connecting a unit square's corners, but the net- 



FIGURE 125 
Economy trees connecting corners of square and pentagon 

work shown has a length of 1 + $3 = 2.732+. A proof without 
calculus that this is minimal is given in Hugo Steinhaus' 100 
Problems in Elementary Mathematics, problem 73 (Basic 
Books, 1964). The minimal path inside a pentagon of unit side 
is 3.891+. 

The minimum Steiner tree inside an equilateral triangle has 
a fourth point in the triangle's center. Minimum Steiner trees 
on regular polygons of six or more sides are simply the perim- 
eter with one side removed. For the general problem of finding 
minimal Steiner networks connecting n points on the plane- 
and a technique for finding such networks by capitalizing on 
the surface tension of a film of soap solution-see Chapter 7 of 
What  Is Mathematics? by Richard Courant and Herbert E. Rob- 
bins (Oxford, 1941 ). 
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Dice 

W e  figured the odds as best we could, and then 
we rolled the dice. 

-JIMMY CARTER, 
quoted by The New York Times, June 10,1976, 

on his decision to seek the Presidency 

THE CHANCE ELEMENT in thousands of indoor games is intro- 
duced by a variety of simple random-number generators. The 
most popular of such devices, ever since the 'time of ancient 
Egypt, have been cubical dice. Why cubical? Because of their 
symmetry, any of the five regular solids can be and have been 
used as gaming dice, but the cube has certain obvious advan- 
tages over the other four solids. It is the easiest to make, its six 
sides accommodate a set of numbers neither too large nor too - 
small, and it rolls easily enough but not too easily. 

The four-sided tetrahedron has been the least popular over 
the centuries; it hardly rolls at all and will randomize no more 
than four numbers. Next to the cube the octahedron has been 
most used as a randomizer for games. Specimens of octahedral 
dice have been found in ancient Egyptian tombs and are still 
used today in certain games. Dodecahedrons (twelve sides) and 
icosahedrons (twenty sides) have been employed mainly for 
fortune-telling. A dodecahedra1 die was a popular fortune-tell- 
ing device in sixteenth-century France, and if you break open 
one of those large fortune-telling balls in which answers to ques- 
tions float upward in a liquid and appear in a window at the top, 



you will find the answers printed on the twenty faces of a float- 
ing icosahedron. 

A few years ago the Japanese Standards Association (Kobiki- 
kan-Bekkan Building, 6-1, Ginza-higashi, Chuo-ku, Tokyo) 
found a practical use for icosahedral dice. Since the number of 
an icosahedron's sides is twice 10, pairs of its sides can be 
marked with one of the ten digits from 0 through 9 to make an 
elegant little instrument for generating random decimal digits 
to be used in Monte Carlo methods, game theory, and so on. 
The dice are sold in sets of three, each a different color (red, 
blue, yellow) so that every throw produces a triplet of random 
digits. Photographs of these dice are on the cover of Birger 
Jansson's valuable monograph Random Number Generators, 
written in English and published in Sweden in 1966. 

The earliest-known cubical dice, found in Egyptian tombs 
predating 2000 B.c., are not uniform in size, material, or the 
way the sides are numbered, although many are identical with 
modern dice (on which the digits 1 through 6 are placed so that 
opposite sides add to 7) .  If that arrangement is not required, 
there are 30 ways a cube's face can be spotted to represent 1 
through 6, counting mirror-reflection forms as different (but 
not taking into consideration the two different orientations of 
the 2, 3, and 6 spots, which, in their traditional patterns, lack 
fourfold symmetry). If opposite sides total 7, as they do on all 
modern dice, there are just two ways of arranging the numbers, 
each a mirror reflection of the other. 

All Western dice are now made with the same handedness. 
If you hold a die so that you see its 1-2-3 faces, the numbers go 
counterclockwise. Dice of both handedness are sold today in 
Japan [see Figure 1261. The type matching Western dice is 

FIGURE 126 

Western-style Japanese die (left) 
and die for Mah-Jongg (right) 
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used in all Japanese games except Mah-Jongg, which uses dice 
that--as Lewis Carroll's Alice put it-"go the other way." Dice 
of either handedness are sold in two forms: the Western, in 
which all the spots are black, and the traditional Japanese form, 
in which the ace is very large, deeply indented, and colored red. 
Chinese and Korean dice also have the large red spot, and in 
addition the spots on the 4 side are also red. Red sides seem to 
play no role in Chinese and Korean games except in determining 
who throws first, the first player being the one who rolls the most 
red spots. The origin of the red coloring is not known. Stewart 
Culin, in his privately printed monograph Chinese Games with 
Dice (Philadelphia, 1889), recounted some old Chinese myths 
that explain the red coloring, but he himself believed it derives 
from earlier Indian dice. 

A professional dice gambler is often so well acquainted with 
the handedness of modern dice--that is, with exactly how any 
triplet of numbers is arranged around a corner-that if you 
show him a die with your finger and thumb covering any two 
opposite sides, he can immediately tell you which number is 
under the finger and which under the thumb. This knowledge is 
useful in detecting a common variety of crooked dice known in 
the trade as "tops." Tops are cubes mis-spotted so that each 
bears only three numbers; pairs of identical numbers are on 
opposite sides. Since no more than three sides of a cube can be 
seen at one time, a pair of tops resting on a surface appear per- 
fectly normal to all players. There is no way, however, to make 
a die of this sort so that every triplet of faces goes the "right 
way." If the reader will take a sugar cube and pencil on it any 
three pairs of digits that surround a corner on a standard die, 
putting duplicate numbers on opposite faces, and then inspect 
the die by viewing each of its eight corners, he will find that at 
four corners the three faces go the "wrong way" when com- 
pared with a modern die. This means that the probability of 
such a die's falling with its three visible faces showing the 
wrong handedness is exactly 1/2. When this occurs, a knowl- 
edgeable gambler immediately recognizes the die as mis-spotted. 

Tops are made in a variety of combinations so that the bust- 



out man-a man who is expert at secretly switching tops in and 
out of games-can "bust into" the game whatever kind of tops 
is.needed at the moment. (The essential rules of craps are: If 
the shooter rolls a "natural" [7 or 111 on his first roll, he wins 
at once. If he throws a "crap" [2, 3, or 121, he loses. Any other 
number becomes his "point," and he continues to throw until he 
either wins by making his point or loses by throwing a 7 before 
making his point. All of this is accompanied by much betting 
of various kinds between players, the nature of which depends 
on whether the game is informal or played in a casino.) For 
example, if the shooter is trying for a point of 4, 6, 8, or 10, a 
1-3-5 and 2-4-6 pair of tops will not form any of those num- 
bers, and so he is sure to L'seven out" before he makes his point. 
Tops of this kind are called "misses." Tops designed to make 
points and incapable of throwing a 7 (for example, 1-3-5 and 
1-3-5) are known as "hits." 

Tops cannot be left long in a game because the danger of de- 
tection is too great, and so a bust-out man has to work fast, as 
well as continually and indetectably. "Good bust-out men die 
young," writes gambling authority John Scarne in Scarne's 
Complete Guide to Gambling (1961); "it's hard on the nervous 
system." 

A "one-way top" is a die with only one number (usually 2 or 
5) duplicated. Such dice can be used in pairs or in combination 
with a legitimate die to give milder percentages, but they are 
harder to detect and sometimes are left in a game for hours. 
"Door pops" are still advertised in the catalogues of crooked- 
gambling-supply firms but are strictly for sucker customers. No 
professional cheat would consider using them. One set always 
craps out because one cube bears only aces and deuces, the other 
only aces. Another set, with 6's and 2's on one die and all 5's 
on the other, always sevens or elevens. As Scarne puts it, they 
can be used only on "soft marks" (extremely gullible suckers) 
"for night play under an overhead light when the chumps can't 
see anything but the top surfaces of the dice. Strictly for use by 
cheats who don't know what a set of real tops is." 

Mis-spotting is only one of dozens of ways dice can be 
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"gaffed" for cheating. They can be loaded in many ingenious 
ways: they can be shaped somewhat like bricks; certain sides 
can be made a trifle convex, causing the cube to favor the flat 
sides, or sides can be made slightly concave to create suction on 
smooth, hard surfaces. Edges can be beveled to alter percent- 
ages. "Capped dice" are made with certain faces bouncier than 
others. "Slick dice" have some faces smoothed and others rough- 
ened. Magnetic dice are loaded to roll normally unless an elec- 
tromagnet concealed under the rolling surface is turned on. Or- 
dinary dice are best tested for loads by dropping them in water 
many times to see if certain faces show more often than they 
should. The interested reader will find all this and much more 
explained in fascinating detail in the standard work on cheating 
at dice, Smrne on Dice, by John Scarne and Clayton Rawson 
(ninth edition, 1968). 

Dicing was enormously popular in ancient Greece and Rome, 
particularly among the upper classes, and during the Middle 
Ages it was a favorite time-waster for both knights and the 
clergy. There were even medieval dicing schools and guilds. 
In the United States today the most popular dice game is craps. 
Apparently it dates from the early 1890's, when blacks in the 
New Orleans area simplified the complicated rules of the Eng- 
lish game of hazard. (Dice are still facetiously called "African 
dominoes.") Then, like jazz, craps spread up the Mississippi 
River and fanned out over the continent. The big gambling 
casinos did not take it up until near the end of the nineteenth 
century. Today it gets faster action than any other casino game. 
Many players believe the shooter has a 50-50 chance of win- 
ning, but it is not hard to prove that the odds are slightly against 
him. To be precise, the shooter's winning probability is exactly 
244/495, or .493+. 

It is easy to go wrong in figuring the probability of dice 
throws. In  the tenth chapter of the last book of Rabelais's Gar- 
gantua and Pantagruel as translated by Jacques Le Clercq 
(Modern Library, 1944), the adventurers visit Sharper's Island, 
formed of two enormous cubic blocks of dazzling white bone. 
"Our navigator informed us," says Pantagruel, "that these 



cube-shaped white rocks had caused more shipwrecks, entailing 
a greater loss of life and property, than . . . Scylla and Cha- 
rybdis." Dice were often called "the devil's bones," and Rabelais 
has Sharper's Island inhabited by 20 devils of chance, one for 
each combination of two dice, from Double Six, the largest 
devil, to Double Aces, the smallest. Actually there are 21 such 
combinations, a figure given correctly in other translations. 
The chart in Figure 127 shows the 6 x 6, or 36, different ways 
two dice can fall. Inspection reveals 21 different combinations. 
With this basic chart one can quickly calculate the probability 
of throwing any sum from 2 through 12. Note that 7 can be 
made in six ways, more than any other sum. The probability 
of throwing a 7 is therefore 6/36, or 1/6. I t  is the easiest of all 
sums to make. 

William Saroyan, in a fine short story about crap shooting 
called "Two Days Wasted in Kansas City," speaks of 4, the 
point he is trying to make, as "one of the toughest numbers in 
the world." The chart proves he is right. Two and 12 are the 
hardest sums to roll, since each can be made in only one way 
(probability 1/36), but neither 2 nor 12 can be a point. Three 
and 11 come next, with probabilities of 2/36, or 1/18, each, but 
3 is a crap and 11 a natural and so neither of them can be a 
point either. The hardest points to make are "Little Joe" (4) 
and "Big Dick" (10). Since each can be made in three ways, 
the probability of throwing each is 3/36, or 1/12, 

Some of the greatest mathematicians have gone astray in 
calculating dice odds. Leibniz thought 11 and 12 had equal 
probabilities because each could be made with only one combi- 
nation of two dice; he failed to consider that 12 can be made in 
only one way, whereas 11 can be made with either die 6 and 
the other 5, making 11 twice as easy to throw as 12. The Greeks 
and Romans preferred games with three dice, and Plato, in his 
Laws (Book 12), cited 3 and 18 as the most difficult sums to roll 
with three dice. They are the only sums that can be made in 
only one way (1-1-1 and 6-6-6). Since there are 6 x 6 x 6, or 
216, equally probable ways of rolling three dice, the probability 
of making a 3 is 1/216. The same holds for 18. That 3 and 18 
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FIGURE 127 
The 36 equally probable ways two dice (shaded and white) can fall 



were the two most difficult throws was well known to both the 
Greeks and the Romans. The Greeks called 6-6-6 "Aphrodite" 
and 1-1-1 "the dog," terms corresponding to our slang of 
"snake eyes" for 1-1 and "boxcars" for 6-6. There are many 
references to these and other dicing terms i i  ~ r e e &  and Latin 
literature. The Roman emperor Claudius even wrote a book 
called How to Win at Dice, but unfortunately it did not survive. 

Sucker bets are bets professional gamblers like to spring on 
marks because they can be made at odds that seem to favor the 
mark but actually do not. In craps, for instance, one might guess 
that it would be just as easy, if the point is 4, for the shooter to 
make it the "hard way" (by throwing identical faces on the 
dice, in this case 2-2) as to make 6 the hard way (3-3). Now, 
it is true that the probability of throwing any sum the hard way 
is 1/36, but the probability of making a point the hard way is 
altogether different. There are three ways to make 4. Only one 
(2-2) is the hard way. The shooter fails to make his point the 
hard way if he throws 3-1 or 1-3, or if he throws 7 before he 
makes 4. Since he can roll 7 in six different ways he has eight 
ways to lose and one to win, and so the odds are eight to one 
against making 4 the hard way. Put differently, his probability 
of doing it is 1/9. Now consider making 6 the hard way. There 
are five ways to roll 6. Only one is the hard way. The shooter 
can lose by throwing 6 in any of the other four ways or by 
throwing 7 in any of its six ways, making a total of ten ways to 
lose and one to win. The odds against making 6 the hard way 
are therefore ten to one and the probability of doing it goes 
down to 1/11. 

One of the oldest and subtlest sucker bets goes like this: The 
hustler first bets even money that the mark will throw an 8 
before he throws a 7. The mark, knowing that 7 is easier to 
make than 8, quickly accepts such bets, which he tends to win. 
The hustler then switches from 8 to 6, betting even money the 
mark will throw 6 before 7. Again the hustler tends to lose be- 
cause 6, like 8, can be made in only five ways as against six 
ways for 7. Now comes the big swindle. The hustler, who is pre- 
tending to be an ignoramus about dice odds, decides to bet even 
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money again, at much higher stakes, that the mark will make 
both 8 and 6 before he throws two 7's. This seems to be just as 
good a bet to the sucker as before; actually the odds now make 
a surprising shift to favor the hustler. If he had specified the 
order of the two numbers, first a 6 or first an 8, the odds would 
have been against him as before. But because the shooter can 
roll &her sum first, it turns out that the hustler has a probabil- 
ity of 4,225/7,7- bit better than 1 / h f  winning. 

Here are three easy dice puzzles: 
1. A magician turns his back and asks someone to roll three 

standard dice and add the top faces. The spectator then picks up 
any die and adds its bottom number to that total. The same die 
is rolled again and its top number is added to the previous total. 
The magician turns around for the first time to glance at the 
dice. Although he has no way of knowing which cube was 
picked for the extra roll, he is able to state the final total cor- 
rectly. How does he do it? 

2. The same mis-spotted die is shown in three views in Fig- 
ure 128. How many spots are opposite the 62 (The problem is 
from Puzzles in Math and Logic, by Aaron J. Friedland [Dover, 
1970) .) 

FIGURE 128 
How many spots are opposite the 6 on this mis-spotted die? 

3. How can two cubes be labeled, each side bearing a number 
from 1 through 6 or left blank, to make a pair of dice that will 
throw with equal probability each sum from 1 through 121 

The use of the die as a randomizer has made it a popular lit- 
erary symbol for chance. We are all familiar with such expres- 
sions as "The die is cast" (said to have been uttered by Julius 



Caesar after he had made his decision to cross the Rubicon), and 
.the ancient Greeks had a proverb, "The dice of the gods are al- 
ways loaded." The central dogma of quantum mechanics is that 
pure chance underlies events on the quantum level; in Ein- 
stein's well-known metaphor, quantum mechanics implies that 
God dices with the universe. It is sometimes argued that even 
though this may be true on the quantum level, on the macro- 
level of human history strictly deterministic laws must still 
hold. A simple thought experiment provides a dramatic counter- 
example. Imagine an artificial satellite carrying a hydrogen 
bomb. The bomb's release is triggered by a Geiger counter click 
recording the emission of an electron in radioactive decay. If 
the timing of such a click is pure chance, as quantum theory 
demands, then pure chance decides which portion of the earth 
is demolished. Thus we could, in actual practice, make an in- 
stant leap from pure chance in the quantum microworld to a 
major alteration of macroworld history, a thought most disturb- 
ing to philosophical determinists. 

The view that God dices with human history has found a 
grimly amusing literary expression in Robert Coover's novel The 
Universal Baseball Association, Inc., 1. Henry Waugh, Prop. 
J .  Henry Waugh, whose name suggests Jehovah, is a lonely 
accountant who lives over a delicatessen. To amuse himself he 
invents a way of playing imaginary baseball by rolling three 
dice, assigning certain events to each of the 56 combinations 
and various sequences of combinations. (Originally he based his 
games on the 216 ways three dice can fall, using dice of three 
different colors, but after almost going blind trying to sort out 
the colors on every throw he shifted to three white dice, consid- 
ering only their combinations.) Over the months Waugh begins 
to imagine actual personalities playing on his team until, like 
so many great characters of fiction-Don Quixote, D'Artagnan, 
Sherlock Holmes-the players inside Waugh's skull take on a 
life of their own to the point where they become, in a sense, 
more real and permanent than Waugh himself. They even be- 
gin to wonder if Waugh exists. 

One thinks of Pirandello's play Six Characters in Search of 
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a n  Author and Unamuno's earlier novel Niebla (Mist), in 
which the protagonist visits the author to protest the author's 
decision to have him die at  the close of the novel, and to remind 
Unamuno that he too may be only a misty, impermanent dream 
in the mind of some inconceivably vast roller of the devil's 
bones. 

ANSWERS 

THE MAGICIAN names the final total by simply adding seven to 
the sum of the three top faces of the dice. This total is the sum 
of the three top faces plus the previous top and bottom of one 
die. Since opposite sides of a die total seven, the working is ob- 
vious. 

The trick is a simplification of a trick given by Claude Gaspar 
Bachet in a 1612 book on mathematical recreations. In Bachet's 
version someone rolls three dice, adds the faces, picks any two 
dice, adds their bottom faces to the total, throws the two again, 
adds their top faces, selects one of the two, adds its bottom face, 
throws it, adds its top face. In this case the final total is the 
sum on the top faces plus 21. 

The answer to the second problem is that the mis-spotted die 
shown from three angles must have a deuce opposite the six. 
Figure 129 shows how the die would look if its faces were un- 
folded. 

FIGURE 129 

Solution to die problem 

The third problem is from 100 Brain-twisters, by D. St. P. 
Barnard, a collection of original puzzles, published in England 
in 1966 and distributed here by D. Van Nostrand. Since there 



are 36 ways two dice can fall, if sums from 1 through 12 are to 
be made with equal probability, each must be made in three 
ways. The only way to make 12 in three ways is by having a 6 
on one die and three 6's on the other. The only way to make 1 
in three ways is to have a 1 on one die and three blanks on the 
other. This leads to the only solution: one standard die, the other 
with three 6's and three blanks. 

The method applies to any of the five regular solids. For ex- 
ample, consider a pair of icosahedral dice. If the numbers 1 
through 20 appear on one icosahedron and the other die has 10 
blank faces and 10 faces bearing 20's, the pair will throw with 
equal probability any sum from 1 through 40. 



C H A P T E R  1 9  

Every thing 

A curious thing about the ontological problem is its 
simplicity. It can be put in  three Anglo-Saxon mono- 
syllables: "What is there?" It can be answered, moreover, 
in a word-"Everything." 

-WILLARD VAN ORMAN QUINE, "On What There Is" 

The topic of the first chapter of this book is "Nothing." I have 
nothing more to say about nothing, or about "something," since 
everything I know about something was said when I wrote 
about nothing. But "everything" is something altogether 
different. 

Let us begin by noting the curious fact that some things, 
namely ourselves, are such complicated patterns of waves and 
particles that they are capable of wondering about everything. 
"What is man in nature?" asked Pascal. "A nothing in compari- 
son with the infinite, an all in comparison with the nothing, a 
mean between nothing and everything." 

In  logic and set theory "things" are conveniently dia- 
grammed with Venn circles. In  Figure 130 the points inside 
circle a represent humans. The points inside circle b stand for 
feathered animals. The overlap, or intersection set, has been 
darkened to show that it has no members. It is none other than 
our old friend the empty set. 

So far, so clear. What about the points on the plane outside 



FIGURE 130 

A Venn diagram for "No humans have feathers" 

the two circles? Obviously they represent things that are not a 
and not b, not human and not feathered, but how far-ranging is 
this set? To clarify the question Augustus De Morgan invented 
the phrase "universe of discourse." It is the range of all the 
variables with which we are concerned. Sometimes it is explic- 
itly defined, sometimes tacitly assumed, sometimes left fuzzy. 
In set theory it is made precise by defining what is called the 
universal set, or, for short, the universe. This is the set with a 
range that coincides with the universe of discourse. And that 
range can be whatever we want it to be. 

With the Venn circles a and b we are perhaps concerned 
only with living things on the earth. If this is so, that is our 
universe. Suppose, however, we expand the universe by adding 
a third set, the set of all typewriters, and changing b to all 
feathered objects. As Figure 131 shows, all three intersection 
sets are empty. It  is the same empty set, but the range of the 
null set has also been expanded. There is only one "nothing," 
but a hole in the ground is not the same as a hole in a piece of 
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TYPEWRITERS (C) 

FIGURE 131 
A Venn diagram for three sets 

cheese. The complement of a set k is the set of all elements in 
the universal set that are not in k. It follows that the universe 
and the empty set are complements of each other. 

How far can we extend the universal set without losing our 
ability to reason about it? It depends on our concern. If we ex- 
pand the universe of Figure 130 to include all concepts, the in- 
tersection set is no longer empty because it is easy to imagine a 
person growing feathers. The proofs of Euclid are valid only if 
the universe of discourse is confined to points in a Euclidean 
plane or in 3-space. If we reason that a dozen eggs can be 
equally divided only between one, two, three, four, six, or 
twelve people, we are reasoning about a universal set that 



ranges over the integers. John Venn (who invented the Venn 
diagram) likened the universe of discourse to our field of vision. 
It is what we are looking at. We ignore everything behind our 
head. 

Nevertheless, we can extend the universe of discourse amaz- 
ingly far. We certainly can include abstractions such as the 
number 2, pi, complex numbers, perfect geometric figures, even 
things we cannot visualize such as hypercubes and non-Euclid- 
ean spaces. We can include universals such as redness and 
cowness. We can include things from the past or in the future 
and things real or imaginary, and can still reason effectively 
about them. Every dinosaur had a mother. If it rains next week 
in Chicago, the old Water Tower will get wet. If Sherlock 
Holmes had actually fallen off that cliff at Reichenbach Falls, 
he would have been killed. 

Suppose we extend our universe to include every entity that 
can be defined without logical contradiction. Every statement 
we can make about that universe, if it is not contradictory, is 
(in a sense) true. The contradictory objects and statements are 
not allowed to "exist" or be "true" for the simple reason that 
contradiction introduces meaninglessness. When a philosopher 
such as Leibniz talks about "all possible worlds," he means 
worlds that can be talked about. You can talk about a world in 
which humans and typewriters have feathers. You cannot say 
anything sensible about a square triangle or an odd integer that 
is a multiple of 2. 

Is it possible to expand our universe of discourse to the ulti- 
mate and call it the set of all possible sets? No, this is a step we 
cannot take without contradiction. Georg Cantor proved that 
the cardinal number of any set (the number of its elements) 
is always lower than the cardinal number of the set of all its 
subsets. This is obvious for any finite set (if it has n elements, it 
must have 2" subsets), but Cantor was able to show that it also 
applies to infinite sets. When we try to apply this theorem to 
everything, however, we get into deep trouble. The set of all 
sets must have the highest aleph (infinite number) for its car- 
dinality; otherwise it would not be everything. On the other 
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hand, it cannot have the highest aleph because the cardinality of 
its subsets is higher. 

When Bertrand Russell first came across Cantor's proof that 
there is no highest aleph, and hence no "set of all sets," he did 
not believe it. He wrote in 1901 that Cantor had been "guilty 
of a very subtle fallacy, which I hope to explain in some future 
work," and that it was "obvious" there had to be a greatest 
aleph because "if everything has been taken, there is nothing 
left to add." When this essay was reprinted in Mysticism and 
Logic sixteen years later, Russell added a footnote apologizing 
for his mistake. ("Obvious" is obviously a dangerous word to 
use in writing about everything.) It was Russell's meditation 
on his error that led him to discover his famous paradox about 
the set of all sets that are not members of themselves. 

To sum up, when the mathematician tries to make the final 
jump from lots of things to everything, he finds he cannot make 
it. "Everything" is self-contradictory and therefore does not 
exist! 

The fact that the set of all sets cannot be defined in stand- 
ard (Zermelo-Fraenkel) set theory, however, does not inhibit 
philosophers and theologians from talking about everything, al- 
though their synonyms for it vary: being, ens, what is, exist- 
ence, the absolute, God, reality, the Tao, Brahman, dharma- 
kaya, and so on. It must, of course, include everything that was, 
is and will be, everything that can be imagined and everything 
totally beyond human comprehension. Nothing is also part of 
everything. When the universe gets this broad, it is difficult to 
think of anything meaningful (not contradictory) that does 
not in some sense exist. The logician Raymond Smullyan, in 
one of his several hundred marvelous unpublished essays, re- 
tells an incident he found in Oscar Mandel's book Chi Po and 
the Sorcerer: A Chinese Tale for Children and Philosophers. 
The sorcerer Bu Fu is giving a painting lesson to Chi Po. "NO, 
no!" says Bu Fu. "You have merely painted what is. Anybody 
can paint what is! The real secret is to paint what isn't!" Chi Po, 
puzzled, replies: "But what is there that isn't?" 

This is a good place to come down from the heights and con- 



sider a smaller, tidier universe, the universe of contemporary 
cosmology. Modern cosmology started with Einstein's model of 
a closed but unbounded universe. If there is sufficient mass in 
the cosmos, our 3-space curves back on itself like the surface of 
a sphere. (Indeed, it becomes the 3-space hypersurface of a 
4-space hypersphere.) We now know that the universe is ex- 
panding from a primordial fireball, but there does not seem to 
be enough mass for it to be closed. The steady-state theory gen- 
erated much discussion and stimulated much valuable scientific 
work, but it now seems to have been eliminated as a viable 
theory by such discoveries as that of the universal background 
radiation (which has no reasonable explanation except that it 
is radiation left over from the primordial fireball, or "big 
bang"). 

The large unanswered question is whether there is enough 
mass hidden somewhere in the cosmos (in black holes?) to halt 
the expansion and start the universe shrinking. If that is des- 
tined to happen, the contraction will become runaway collapse, 
and theorists see no way to prevent the universe from entering 
the "singularity" at the core of a black hole, that dreadful spot 
where matter is crushed out of existence and no known laws 
of physics apply. (For a superb painting of a black hole, see 
Figure 2.)  Will the universe disappear like the fabled Poof 
Bird, which flies backward in ever decreasing circles until- 
poof!-it vanishes into its own anus? Will everything go 
through the black hole to emerge from a white hole in some 
completely different spacetime? Or will it manage to avoid the 
singularity and give rise to another fireball? If reprocessing is 
possible, we have a model of an oscillating universe that peri- 
odically explodes, expands, contracts, and explodes again. 

Among physicists who have been building models of the uni- 
verse John Archibald Wheeler of Princeton University has gone 
further than anyone in the direction of everything. In Whee- 
ler's wild vision our universe is one of an infinity of universes 
that can be regarded as embedded in a strange kind of space 
called superspace. 

In  order to understand (dimly) what Wheeler means by 
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superspace let us start with a simplified universe consisting of a 
line segment occupied by two particles, one black and one gray 
[see Figure 132, top] .  The line is one-dimensional, but the par- 
ticles move back and forth (we allow them to pass through each 
other) to create a spacetime of two dimensions: one of space and 
one of time. 

There are many ways to graph the life histories of the two 
particles. One way is to represent them as wavy lines, called 
world lines in relativity theory, on a two-dimensional space- 
time graph [see Figure 132, bottom]. Where was the black 
particle at time k? Find k on the time axis, move horizontally 
to the black particle's world line, then move down to read off 
the particle's position on the space axis. 

To see how beautifully the two world lines record the his- 
tory of our infant universe, cut a slot in a file card. The slot 
should be as long as the line segment and as wide as a particle. 
Place the card at the bottom of the graph where you can see the 
universe through it. Move the card upward slowly. Through 
the slot you will see a motion picture of the two particles. They 
are born at the center of their space, dance back and forth until 
they have expanded to the limits, and then dance back to the 
center, where they disappear into a black hole. 

In kinematics it is sometimes useful to graph the changes of 
a system of particles as the motion of a single point in a higher 
space called configuration space. Let us see how to do this with 
our two particles. Our configuration space again is two-dimen- 
sional, but now both coordinates are spatial. One coordinate is 
assigned to the black particle and the other to the gray particle 
[see Figure 1331. The positions of both particles can be repre- 
sented by a single point called the configuration point. As the 
point moves, its coordinate values change on both axes. One axis 
locates one particle, the other axis the other particle. The tra- 
jectory traced by the moving point corresponds to the changing 
pattern of the system of particles; conversely, the history of the 
system determines a unique trajectory. It is not a spacetime 
graph. (Time enters later as an added parameter.) The line 
cannot form branches because that would split each particle in 



A one-dimensional universe with two particles 

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6  
SPACE 

FIGURE 132 
A space-time graph of a two-particle cosmos from birth to death 
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-6 -3 0 +3 +6 

BLACK PARTICLE 

FIGURE 133 
A configuration-space graph of the history of two particles 

in  a one-dimensional universe 

two. It may, however, intersect itself. If a system is periodic, 
the line will be a closed curve. To transform the g r ~ p h  into a 
spacetime graph we can, if we like, add a time coordinate and 
allow the point to trace a curve in three dimensions. 

The technique generalizes to a system of N particles in a 
space with any number of dimensions. Suppose we have 100 
particles in our little line-segment cosmos. Each particle has 
one degree of freedom, so our configuration point must move 
in a space of 100 dimensions. If our universe is a system of N 
particles on a plane, each particle has two degrees of freedom, 



so our configuration space must be a hyperspace of 2N dimen- 
sions. In 3-space a particle has three degrees of freedom, so the 
configuration space must have 3N dimensions. I n  general the 
hyperspace has an order equal to the total degrees of freedom 
in the system. Add another coordinate for time and the space 
becomes a spacetime graph. 

Unfortunately the position of a configuration point at any 
instant does not enable us to reconstruct the system's past or 
predict its future. Josiah Willard Gibbs, working on the thermo- 
dynamics of molecules, found a slightly more complicated space 
in which he could graph a system of molecules so that the rec- 
ord was completely deterministic. This is done by assigning six 
coordinates to each molecule: three to determine position and 
three to specify momentums. The movement of a single phase 
point in what Gibbs called a "phase space" of 6N dimensions 
will record the life history of N particles. Now, however, the 
position of the phase point provides enough information to re- 
construct (in principle) the entire previous history of the sys- 
tem and to predict its future. As before, the trajectory cannot 
branch, but now it also cannot intersect itself. An intersection 
would mean that a state could be reached from two different 
states, and could lead to two different states, but both possibili- 
ties are ruled out by the assumption that position and momen- 
tums (which include a vector direction) fully determine the 
next state. The curve may still loop, however, indicating that 
the system is periodic. 

Our universe, with its non-Euclidean spacetime and its quan- 
tum uncertainties, cannot be graphed in anything as simple as 
phase space, but Wheeler has found a way to do it in super- 
space. Like configuration space, superspace is timeless, but it 
has an infinity of dimensions. A single point in superspace has 
an infinite set of coordinates that specify completely the struc- 
ture of our non-Euclidean 3-space: its size, the location of every 
particle, and the structure of every field (including the curva- 
ture of space itself) at every point. As the superpoint moves, its 
changing coordinate numbers describe how our universe 
changes, not failing to take into account the role of observers' 
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frames of reference in relativity and the probability parameters 
of quantum mechanics. The motion of the superpoint gives the 
entire history of our universe. 

At the same time (whatever that means!) that the present 
drama of our cosmos is being acted on the stage of superspace 
countless other superpoints, representing other 3-space uni- 
verses, are going through their cycles. Superpoints close to one 
another describe universes that most resemble one another, like 
the parallel worlds that H. G. Wells introduced into science fic- 
tion with his Men Like Gods. These parallel universes, cut off 
from one another because they occupy different slices of super- 
space, are continually bursting into spacetime through a singu- 
larity, flourishing for a moment of eternity, then vanishing 
back through a singularity into the pure and timeless "pre- 
geometry" from whence they came. 

Whenever such a cosmos explodes into being, random factors 
generate a specific combination of logically consistent (Leibniz 
called them compossible) particles, constants, and laws. The re- 
sulting structure has to be tuned exceedingly fine to allow life. 
Alter the fine-structure constant a trifle either way and a sun 
such as ours becomes impossible. Why are we here? Because 
random factors generated a cosmic structure that allowed us to 
evolve. An infinity of other universes, not so finely tuned, are 
living and dying without there being anyone in them capable 
of observing them. 

These "meaningless" universes, meaningless because they 
contain no participator-observers, do not even "exist" except in 
the weak sense of being logically possible. Bishop Berkeley said 
that to exist is to be perceived, and Charles Sanders Peirce 
maintained that existence is a matter of degree. Taking cues 
from both philosophers, Wheeler argues that only when a uni- 
verse develops a kind of self-reference, with the universe and 
its observers reinforcing one another, does it exist in a strong 
sense. "All the choir of heaven and furniture of earth have no 
substance without a mind" was how Berkeley put it. 

As far as I can tell, Wheeler does not take Berkeley's final 
step: the grounding of material reality in God's perception. In- 



deed, the fact that a tree seems to exist in a strong sense, even 
when no one is looking at it, is the key to Berkeley's way of 
proving God's existence. Imagine a god experimenting with bil- 
lions of cosmic models until he finds one that permits life. 
Would not these universes be "out there," observed by the 
deity? There would be no need for flimsy creatures like our- 
selves, observing and participating, to confer existence on these 
models. 

Wheeler seems anxious to avoid this view. He argues that 
quantum mechanics requires participator-observers in the uni- 
verse regardless of whether there is an outside observer or not. 
In one of his metaphors, a universe without internal observers 
is like a motor without electricity. The cosmos "runs" only 
when it is "guaranteed to produce somewhere, and for some 
little length of time in its history-to-be, life, consciousness and 
observership." Internal observers and the universe are both es- 
sential to the existence of each other, even if the observers exist 
only in a potential sense. This raises unusual questions. How 
strongly does a universe exist before the first forms of life 
evolve? Does it exist in full strength from the moment of big 
bang, or does its existence get stronger as life gets more com- 
plex? And how strong is the existence of a galaxy, far removed 
from the Milky Way, in which there may be no participator- 
observers? Does it exist only when it is observed by life in an- 
other galaxy? Or is the universe so interconnected that the ob- 
servation of a minute portion of it supports the existence of all 
the rest? 

There is a famous passage in which William James imagines 
a thousand beans flung onto a table. They fall randomly, but 
our eyes trace geometrical figures in the chaos. Existence, wrote 
James, may be no more than the order which our consciousness 
singles out of a disordered sea of random possibilities. This 
seems close to Wheeler's vision. Reality is not something out 
there, but a process in which our consciousness is an essential 
part. We are not what we are because the world is what it is, 
but the other way around. The world is what it is because we 
are what we are. 
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When relativity theory first won the day, many scientists 
and philosophers with a religious turn of mind argued that the 
new theory supported such a view. The phenomena of nature, 
said James Jeans, are "determined by us and our experience 
rather than by a mechanical universe outside us and inde- 
pendent of us." The physical world, wrote Arthur Stanley Ed- 
dington, "is entirely abstract and without 'actuality' apart from 
its linkage to consciousness." Most physicists today would deny 
that relativity supports this brand of idealism. Einstein himself 
vigorously opposed it. The fact that measurements of length, 
time, and mass depend on the observer's frame of reference in 
no way dilutes the actuality of a spacetime structure inde- 
pendent of all observers. 

Nor is it diluted by quantum mechanics. What bearing does 
the statistical nature of quantum laws have on the independent 
existence of a structure to which those laws apply whenever it 
is observed? The fact that observations alter state functions of a 
system of particles does not entail that there is nothing "out 
there" to be altered. Einstein may have thought that quantum 
mechanics implies this curious reduction of physics to psychol- 
ogy, but there are not many quantum experts today who agree. 

In  any case, belief in an external world, independent of 
human existence but partly knowable by us, is certainly the 
simplest view and the one held today by the vast majority of sci- 
entists and philosophers. As I have suggested, to deny this com- 
mon-sense attitude adds nothing of value to a theistic or pan- 
theistic faith. Why adopt an eccentric terminology if there is 
no need for it? 

But this is not the place for debating these age-old questions. 
Let me turn to a strange little book called Eureka: A Prose 
Poem, written by Edgar Allan Poe shortly before his death. 
Poe was convinced that it was his masterpiece. "What I have 
propounded will (in good time) revolutionize the world of 
Physical & Metaphysical Science," he wrote to a friend. "I say 
this calmly-but I say it." In another letter he wrote, "It is no 
use to reason with me now; I must die. I have no desire to live 
since I have done Eureka. I could accomplish nothing more." 



( I  quote from excellent notes in The Science Fiction of Edgar 
Allan Poe, edited by Harold Beaver, Penguin Books, 1976.) 

Poe wanted his publisher, George P. Putnam, to print 50,000 
copies. Putnam advanced Poe fourteen dollars for his "pam- 
phlet," and printed 500 copies. Reviews were mostly unfavor- 
able. To this day the book seems to have been taken seriously 
only in France, where it had been translated by Baudelaire. 
Now suddenly, in the light of current cosmological speculation, 
Poe's prose poem is seen to contain a vast vision that is essen- 
tially a theist's version of Wheeler's cosmology! As Beaver 
points out, the "I" in Poe's "Dreamland" has become the uni- 
verse itself: 

By a route obscure and lonely, 
Haunted by ill angels only, 
Where an Eidolon, named NIGHT, 
On a black throne reigns upright, 
I have reached these lands but newly 
From an ultimate dim Thule- 

From a wild weird clime that lieth, sublime, 
Out of SPACE-OU~ of T I M E .  

A universe begins, said Poe, when God creates a "primordial 
particle" out of nothing. From it matter is "irradiated" spheri- 
cally in all directions, in the form of an "inexpressibly great yet 
limited number of unimaginably yet not infinitely minute 
atoms." As the universe expands, gravity slowly gains the 
upper hand and the matter condenses to form stars and planets. 
Eventually gravity halts the expansion and the universe begins 
to contract until it returns again to nothingness. The final 
"globe of globes will instantaneously disappear" (how Poe 
would have exulted in today's black holes!) and the God of our 
universe will remain "all in all." 

In  Poe's vision each universe is being observed by its own 
deity, the way your eye watched the two particles dance in our 
created world of I-space. But there are other deities whose eyes 
watch other universes. These universes are "unspeakably dis- 
tant" from one another. No communication between them is 
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possible. Each of them, said Poe, has "a new and perhaps totally 
different series of conditions." By introducing gods Poe implies 
that these conditions are not randomly selected. The fine-struc- 
ture constant is what it is in our universe because our deity 
wanted it that way. In  Poe's superspace the cyclical birth and 
death of an infinity of universes is a process that goes on "for 
ever, and for ever, and for ever; a novel Universe swelling into 
existence, and then subsiding into nothingness at every throb 
of the Heart Divine." 

Did Poe mean by "Heart Divine" the God of our universe or 
a higher deity whose eye watches all the lesser gods from some 
abode in supersuperspace? Behind Brahma the creator, goes 
Hindu mythology, is Brahman the inscrutable, so transcendent 
that all we can say about Brahman is Neti neti (not that, not 
that). And is Brahman being observed by a supersupersuper- 
eye? And can we posit a final order of superspace, with its Ulti- 
mate Eye, or is that ruled out by the contradiction in standard 
set theory of the concept of a greatest aleph? 

This is the great question asked in the final stanza of the 
Hymn of Creation in the Rig Veda. The "He" of the stanza is 
the impersonal One who is above all gods: 

Whether the world was made or was self-made, 
He knows with full assurance, He alone, 
W h o  in the highest heaven guards and watches; 
He knows indeed, but then, perhaps, He knows not! 

I t  is here that we seem to touch--or perhaps we are still in- 
finitely far from touching-the hem of Everything. Let C. S. 
Lewis (I  quote from Chapter 2 of his Studies in  Words) make 
the final comment: " 'Everything7 is a subject on which there is 
not much to be said." 



1 A N D  2 .  N O T H I N G ,  A N D  
MORE ADO ABOUT N O T H I N G  

WHEN THE FIRST EDITION of this book was copy edited, an editor 
asked me if it was necessary to obtain MOMA's (Museum of 
Modern Art) permission to reprint Ad Reinhardt's all-black 
painting (Figure 2). I convinced her it was not necessary. And as 
I anticipated, somewhere along the production line I was asked 
for the missing art of Figure 3. This picture of the null graph, by 
the way, is reproduced (without credit to the artist) as Figure 
257 in the Dictionary of Mathematics, edited by E. J. Borowski 
and J. M. Bonvein (London: Collins, 1989). 

Meditating on the recent flurry of interest in what is called 
the "anthropic principle" (on this see Chapter 31 in Gardner's 
Whys and Wherefores, University of Chicago Press, 1989), I 
suddenly realized that I could answer the superultimate ques- 
tion: Why is there something rather than nothing? Because if 
there wasn't anything we wouldn't be here to ask the question. I 
think this points up the essential absurdity of the weak an- 
thropic principle. It's not wrong, but it contributes nothing sig- 
nificant to any philosophical or scientific question. The Danish 
poet Piet Hein, in one of his "grook" verses, says it this way: 

The universe may 
Be as great as they say, 
But it wouldn't be missed 
If it didn't exist. 

Lakenan Barnes, an attorney in Missouri, reminded me that 
Joshua was the son of Nun (Joshua 1:1), that "love" in tennis 



FIGURE 134 

Henry Moore's "Nuclear Energy, " at the University of Chicago, 
commemorates the site where Enrico Fermi achieved the first 

sustained nuclear reaction in 1942. By an adroit use of holes, Moore 
has combined a mushroom cloud, the eye sockets of a skull, the 

look of an  embryo, and the vaulting of a cathedral. 
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means nothing, that the doughnut's hole is the "dough naught." 
He also passed along a quatrain of his that had appeared in the 
St. Louis Post-Dispatch (July 7, 1967): 

In the world of math 
That Man has wrought, 
The greatest gain 
Was the thought of naught. 

Some readers were mystified by the chapter's epigraph. It is 
the second sentence of Heath's article on nothing in the Ency- 
clopedia of Philosophy. Like Lewis Carroll, in the second Alice 
book, Heath is taking Nobody to be the name of a person. Here 
is the sentence in the context of Heath's playful opening para- 
graph: 

NOTHING is an awe-inspiring yet essentially undigested 
concept, highly esteemed by writers of a mystical or existen- 
tialist tendency, but by most others regarded with anxiety, 
nausea, or panic. Nobody seems to know how to deal with it 
(he would, of course), and plain persons generally are re- 
ported to have little difficulty in saying, seeing, hearing, and 
doing nothing. Philosophers, however, have never felt easy on 
the matter. Ever since Parmenides laid it down that it is im- 
possible to speak of what is not, broke his own rule in the act 
of stating it, and deduced himself into a world where all that 
ever happened was nothing, the impression has persisted that 
the narrow path between sense and nonsense on this subject 
is a difficult one to tread and that altogether the less said of it 
the better. 

4 .  F A C T O R I A L  O D D I T I E S  

CAN A FACTORIAL greater than I! be a square number? Can the 
sum of the first m factorials (except for m = 1 and 3) be a 
square? (We take the first factorial to be O!) Simple proofs of 
"no" for both questions will be found in the note by David 
Silverman cited in the bibliography. 

Douglas Hofstadter wrote to ask the basis for this curious se- 
quence: 0, 1, 2, 720! Answer: 0, I!, 2!!, 3!!!, . . . . 

Gustavus J. Simmons, in the two notes cited in the bibliogra- 
phy, conjectures that 3!, 4!, 5!, and 6! are the only four factorials 



ACROSS 

1. " to it" 
6. Bestseller The 
- Book 

15. What Lady 
Godiva wore 

16. Opposite of 
something 

17. What Old Mother 
Hubbard found in 
her cupboard 

18. Good for - 
19. "Here goes - !" 
20. Zero 
21. - succeeds 

like success 
23. To say - of 
24. Not anything 
25. Naught 
26. Trifling or inane remark 
29. For - (free) 
30. Love, in tennis 
31. NIGHT ON (anag.) 
32. Nil 
33. Come to - (fail) 
34. Have - to do with 
35. Rien 
36. Answer to 'What are you doing?" 
37. Goose egg 
41. Leaving - to chance 
43. What amnesiacs can remember 
44. Much Ado About - 
45. No substance 
46. Absence of quantity 
47. Leave - to the imagination 
48. "is - sacred?" 
49. What's certain besides death 

and taxes 

DOWN 

1. What's more fun than GAMES 
2. ( 1 2 i 3 ) - 2 2  
3. - new under the sun 
4. Thanks for - 
5. Contents of the null set 
6. 0 
7. The middle of a doughnut 
8. Double or - 
9. - to worry about 

10. Word with ventured and gained 
11. Take - for granted 
12. Bankrupt's net worth 
13. Nihil 
14. ". . . and - but the truth 
20. Utter insignificance 
22. Zilch 
25. "Wise men say - in dangerous 

times" (John Selden) 
26. What's in a vacuum 
27. In - flat 
28. What moves faster than 

the speed of light 
29. K n o w -  Party 
31. What, subtracted from itself, leaves itself 
33. Better than - 
35. The emperor's "new clothes" 
37. " doing" 
38. "1 have - to wear" 

(familiar complaint) 
39. Nonentity 
40. Leave - behind 
42. This: 
45. What to do to complete this puzzle 

Reprinted from GAMES Magazine (810 Sev- 
enth Ave., New York, NY 10019). Copyright 
0 1 9 7 9  PSC Games Limited Partnership. 

FIGURE 135 

This crossword puzzle by  Will Shortz appeared in the March/April 
1979 issue of Games magazine as a n  April Fool$ joke. Because the 
answer to each definition is nothing, the correct solution is to leave 

the grid blank. 
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equal to the product of three consecutive digits. (The triplets are 
1 x 2 x 3, 2 x 3 x 4 , 4  x 5 x 6, a n d 8  x 9 x 10. )AsfarasI  
know, this conjecture remains undecided. 

Charles W. Trigg posed this problem in the note cited. The 
only odd n whose factorial has n digits is 1. What odd n has a 
factorial with 2n digits? The only answer is 267. 

Dean Huffman, for his Christmas card, modified the tree 
shown in Figure 10 (for 105!) by arranging the 25 terminal 
zeroes in a 5 x 5 square to make the tree's trunk. 

Joseph Madachy informed me that 450! is known as the Ara- 
bian Nights factorial because it has 1,001 digits. 

I mentioned earlier that no one knows if factorial-plus-one 
primes are finite or infinite in number. Seventeen are known: 
n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 
872, and 1477. The last prime, 1477! + 1, has 4,042 digits. 

It also is not known whether factorial-minus-one primes are 
finite or infinite in number. Fifteen have been found: n = 3, 4, 
6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, and 469. The last 
one, 469! - 1, has 1,051 digits. For this data on both types of 
factorial primes I am indebted to Samuel Yates, one of the na- 
tion's prime prime watchers. 

5 .  THE C O C K T A I L  CHERRY A N D  
O T H E R  PROBLEMS 

A BREAKTHROUGH ON LANGFORD'S problem was obtained by two 
Japanese mathematicians at the Miyagi Technical College. 
Takanois Hayasaka and Sadao Saito used a special-purpose cal- 
culator to search for quartets that would form Langford se- 
quences. They found three, each of length 4 x 24 = 96 num- 
bers. They proved that the minimum value of n (the number of 
quartets) is 24. The three sequences are given in their note on 
"Langford Sequences: A Progress Report," in Mathematical 
Gazette, Vol. 63, December 1979, pages 261-262. That same 
year they reported the results of a computer search for pen- 
tuplets through n = 24, and sextuplets through n = 21. No so- 
lutions were found. 

In 1980 at Lewis and Clark College, John Miller completed a 
computer search on the original Langford problem, with dou- 



blets, for solutions when n = 15. He reports that he found 
39,809,640 chains, excluding reversals. More recently, on 
Nickerson's variant, he found 227,968 solutions for n = 12, and 
1,520,280 solutions for n = 13. 

When I said that Eugene Levine found only one solution for 
triplets when n = 9, I did not know that Miller had made an ex- 
haustive computer search that found three solutions for n = 9. 

Another exhaustive search by Miller turned up five solutions 
for triplets when n = 10. 

A recent paper on the general problem is "Exponential Lower 
Bounds for the Numbers of Skolem and Extremal Langford Se- 
quences," by Jaromir Abram, in Ars Combinatoria, Vol. 22, 
1986, pages 187-198. 

6 .  D O U B L E  A C R O S T I C S  

A. Ross ECKLER, in a 1986 article in Word Ways, a quarterly 
journal he edits (see bibliography), reported his discovery of a 
double acrostic earlier than the 1856 one cited by Henry 
Dudeney. In an 1852 issue of a British periodical called The 
Family Friend, Eckler found two word puzzles that clearly are 
double and triple acrostics. 

7.  P L A Y I N G  C A R D S  

RUDOLF ONDREJKA confirmed my statement that the probability 
of winning the poker bet with 25 randomly chosen cards is in- 
deed high. He shuffled a deck, dealt himself 1,000 samples of 
25 cards, and found he could form the five poker hands 986 
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times. He estimates the probability of winning at 98 to 99 per- 
cent. It would be interesting to program a computer to pin down 
the exact odds. 

8. FINGER ARITHMETIC 

J .~MES ALBERT LINDON (he liked to be called JAL) was a resident 
of Addlestone, England, where he and a sister rail what he called 
a "miserable little gift shop." He died in 1979, at age 65, almost 
penniless, almost blind, and almost unkno\vn. Although we never 
met, I sorely miss his letters and the unpublished verse and 
ingei~ious word play that came with them. His comic poeins could 
be assembled from his friends and correspondents into a mar- 
velous book, but who ~vould publish it? 

9. MOBIUS BANDS 

LORRAINE L.UISON, a biology professor at the Uni\,ersity of Mas- 
sachusetts, called attention (see bibliography) to a contros1ersy I 
had not known about. There is some evidence that J. B. Listing, 
one of topology's pioneers, studied the Mobius strip several years 
prior to the 1865 paper ill which Mobius first published his study 
of the surface. She cites as a reference Invitation to Combinatorial 
Topolog~, by M. Fi-kchet and K. Fan (Prindle, Weber, and Schmidt, 
1967), page 29. 

Environment Canada, in 1984, appropriated the Mobius strip 
for its logo to sy~nbolize the recycling of materials. As its press 
release put it: "Citizen's groups and recycling industries can- 
vassed recenily have ~vholeheartedly supported the selection of 
the Mobius loop as Canada's recycling symbol." Manufacturers 
are expected to stamp the symbol 011 products containing reused 
materials. The logo breaks the strip into three fat, twisted arrows 
as shown below: 



The number I gave for Lee De Forest's 1923 patent (it has 
been removed from the text) is incorrect, as several readers in- 
formed me, but I was unable to locate my source for this number, 
or to learn the correct one. I'll be pleased to hear fi-om any read- 
er who can run it down. In 1986 I Mias told that IBM was selling 
a printer that used a Miibius-strip to double the ribbon's 
life. 

11. POLYHEXES AND POLYABOLOES 

AT THE REQUEST of many readers, Figure 136 shows the 22 pen- 
tahexes. I know of no confirmed counts of distinct polyhexes 
(excluding reflections but including pieces with holes) beyond 
order 12, as mentioned in the chapter's addendum, or of any 
progress in finding an enumeration formula. 

Andrew Clarke investigated the tiling of polyaboloes. All 
shapes of orders 1 through 4 tile the plane. Clarke found that all 
but four of the pentaboloes tile, and all but nineteen of the hexa- 
boloes. He also investigated 3-D analogs corlsistirlg of solids 
formed by,joining half-cubes. The half-cubes, obtained by slicing 
unit cubes diagonally, are put together so at least one edge of one 
coincides with an edge of another, and so there is soine area of 
surface contact. Three half-cubes joined in this manner, in all 
possible ways, produce twelve solids which call be used to pro- 
duce solid fig~i-es in the manner of polycube pieces. 

12. PERFECT, AMICABLE, SOCIABLE 

THE CONJECTURE THAT there are no odd perfect numbers con- 
tinues to be one of the most notorious urlsolved problenls in 
number theory. It could turn out to be undecidable, in which case 
it would have to be true. Why? Because if it were false there would 
be a counterexanlple (an odd perfect) and that would make the 
conjecture decidable. 

There is a volumi~~ous literature on the properties odd per- 
fects would have if they existed. The lower bound was raised in 
1991 to 10900, and by now has perhaps gone higher. Euclid 
showed that an odd perfect must have the form k(p4""+'), wherep 
is an odd prime and k is a perfect square. However, not all num- 
bers of this form, 243 for example, are perfect. In 1980 it was 
sho~rn that an odd perfect must have at least eight distinct factors. 



Postscript 287 

FIGURE 136 

The 22 Pentahexes 



Can an odd perfect be a square? A "no" answer is easily 
proved on the basis of the fact cited earlier that the sum of a per- 
fect number's divisors is 2n, an even number. If a number is odd, 
all of its divisors will be odd. If an integer is a square it has an 
odd number of divisors: its square root plus the evenly paired di- 
visors less than its yquare root and those larger than it5 square 
root. Hence, an odd perfect number that was a square lvould 
have to have an odd number of odd divisors. But the sum of an 
odd number of odd numbers cannot be even. 

Since this book's first edition in 1977, seven more Mersenne 
primes have been found by computer searches. This extends the 
table shown in Figure 71 to 38 perfect numbers. The new per- 
fects are listed in Figure 137. 

The past decade has witnessed a veritable explosioil in the 
discovery of new amicable pairs as number theorists kept find- 
ing new fori~lulas for them. Elvin Lee, of Fargo, North Dakota, 
one of the most active researchers in this area, tells me that the 
single most important achievement is a theorem presented by 
the German mathematician Walter Borho in his 1972 paper 
(cited in the bibliography) on Thabit ibn Kurrah's formula. Lee 
was the first to show how to obtain an unli~nited nurrlber of new 
formulas from Borho's theorem. By 1989 more than 55,000 
anlicable pairs were known. The largest, found by Hernlall J.  J. 
te Riele, has 282 digits. Lee informs me that a still larger pair, 
each exceeding 600 digits, has beer1 found in Gerrrlarly but I do 
not have the details. I11 an exhaustive search for arrlicables less 
than 10,000,000,000, te Riele found 1,427 pairs (see the bibliog- 
raphy for his report on this). 

Marly conjectures have been proved or disproved. One of tlle 
most interesting proofs, by Carl Pomerance, is that the sum of the 
reciprocals of all amicable numbers converges. The long-stand- 
ing guess that every odd amicable is a multiple of 3 was shot 
down, as well as my second conjecture that the sum of every 
ever1 amicable pair is equal to 0 or 7 (modulo 9). In 1984 te Riele 
fourld two counterexamples, tlle smallest of which is the pair 
967947856 and 103 1796176. Its sum equals 3 (modulo 9). 

In 1988 two mathematicians reported the falsity of the conjec- 
ture that every odd ai~licable number is a multiple of 3. (See the 



last entry in the bibliography for ainicable nunlbers.) The au- 
thors give fifteen counterexamples, of which the smallest is 
(1(140453)(85857199) and (1(56099)(214953207), where cr = j4 x 
7% 11% 13' x 17' x 19 x 61' x 97 x 307. Snlaller counterex- 
amples may exist. I\'hether there is an odd amicable pair with just 
one nuillber divisible by 3 remaills open. 

The t~vo outstanding questions about ainicables remain unan- 
swered. Is there a crowd? Is the set of amicable pairs finite or 
infinite? 

Mersenile primes should not be coilfused \.\-it11 Fermat prinles 
which have the for111 2" + 1. Only five such priirles are knou-n 
(it = 2O, 2l, 22, 23, P ) ,  and it is not knov-n if their rluirlber is fi- 
nite or infinite. Fernlat proved that if such a nimlber is prime 
then n is a ponJer of ~TZJO. He conjectured that nunlbers of this 
form are always priine \\-hen n is a power of 2, but his conjecture 
fails for ri = 32.  In 1988 the lowest then untested ilurrlber of this 
for111 was z'~" + 1, and it was found to be conlposite. Remark: in 
1999 Mayes, Papaclopoulos, and Cranclell sho~ved F2+, 2224 + 1, to 
be composite. 

13.  POLYOMINOES AND RECTIFICATION 

THE UNSOTSTF.D REC:TTFTC,\TTOU pi-oblenls nlentionecl in the chap- 
tei; involving the hexonlino and the heptonlino shoxvn at the 
right of Figure 81, were both solved in 1987 by Karl Dahlke, a 

FIGURE 137 
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software engineer at AT&T Bell Laboratories, in Naperville, 
Illinois. Dahlke is blind, but he has a personal computer with a 
speech synthesizer that translates the machine's output into 
sound. 

At first Dahlke tried to prove that both rectifications were 
impossible. Failing at this, he began a systematic computer search 
for the sillallest rectangle that perhaps could be formed by repli- 
cas of each piece. His success was reported by Ivars Peterson in 
Science News, Vol. 132, Novernber 14, 1987, page 132. 

Solomon Golomb worked on both problems. He found that 
each piece would tile an infinite half-strip (one that goes to infin- 
ity in only one direction). He also found that each piece will tile 
a rectangle with a unit hole. "I was amazed," he told Science New.7 
when informed of Dahlke's solutions. "A lot of very bright people 
have worked on [the problems]. It is a noteworthy accomplish- 
nlent." 

Actually, credit for the first rectification of the heptomino 
should go to Karl Scherel; of Auckland, New Zealand. He pro- 
posed it as a problem in the Journal of Recreational Mathe?natics, 
Vol. 14, No. 1, 1981/82, p. 64. Scherer, who had found a rectifi- 
cation, gave the rectangle's size as 26 x 42, larger than Dahlke's 
21 x 26. Because no reader solved the problem, publication of 
Scherer's solution was delayed. See the journal's Vol. 21, No. 3, 
1989. 

Dahlke contributed two short papers to the Journal oJ" Com- 
hinutorial Theory, Series A, May 1989. The paper titled "The Y- 
Hexoiilino Has Order 92" (pp. 125-126), asserts that the small- 
est rectangle that can be tiled with the hexomino is 23 x 24. It 
contains 92 hexominoes, the largest number for a rrlinirrlal tiling 
of any hexomino. The other paper, titled "A Heptomino of Order 
76" (pp. 127-128), reported that the 19 x 28 rectangle is the 
srrlallest solution for the heptornino. It contains 76 replicas, or 
two less than the number in the solution Dahlke found earlier 
and which was published in Science News. The two minimal so- 
lutions are shown in Figure 138. 

In a paper on "Polyominoes Which Tile Rectangles," in the 
Jvurnal of Cornbinatorial Theory, Series A (May 1989), pages 
1 17-1 24, Solonlon Goloinb reports on some results involving 
what I shall call the replication order (RO) of a polyomino. This 



FIGURE 138 
Karl Dahlke's solz~tzons to two d f j cu l t  rectzjcatton t m h .  Above, the 92 coptes 
of the hexo~nzno tzle a 23 x 24 rectangle ol~tazned 21% 1987. 0 1 2  the bottom, 76 

cop~es of a heptorr~ano tzle a 2 1 x 26 rectungle worked out 112 1988. 



is the srrlallest nui~~bei-  of replications that will form a rectangle. 
X polyomino has RO 1 if and only if it is itself a rectangle. (RO is 
urldefiiled for a polyomino that cannot tile a rectangle.) Golomb 
describes the conditions for a polyomino to have RO 2 and 4, and 
sllo~vs that there are infinitely marly polyoniinoes of RO 2, and of 
all ROs that are nlultiples of 4. 

Golomb lists many unsolved problems. For example, single 
iilstarlces are kno~vn for ROs 10 and 18. Is there a polyomino for 
every eve11 RO? The chief unsolved question is ~chether there is a 
polyomino, aside from the trivial RO 1, with an odd RO. Small 
odd ROs such as 3 and 5 ''seem particularly imlikel\.;" Goloirlb 
writes, but he sees no reason why larger odd replication orders 
are not possible. 

Edward cle Bono in~en ted  and patented a sirrlple but elegant 
little two-person ganle played on a 4 x 4 field nit11 t~vo L-tetro- 
illirloes and avo rlionoirliiloes (unit squares). You'll find the rules 
explained in his Pelican paperback, The Five-Day Conrse in 
Thinking. He also wrote about tlle gallie in the British nionthly, 
Gn7ne.s clnd Puzzles (Novenlber 1074), pages 4-6 (see also letters 
on the game in the Feb1-uai-y 1'375 issue, page 36). The L-game, 
as it is called, is described in David Pritchard's Bwirz Gul~les 
(Penguin, 1982) and analyzed in the first \-olume of PT7irzlzing 1lhj.c 
(Academic, 1982), by Ehyn Berlekamp, John Conway, and 
Richard Guy. 

I% proof that tlle game is a drarz if both sides play rationally \\.ill 
be fouild in Karl Scherer's "L-Play is a Draw," in the,Jounlcrl of 
Recr.eatio?ztll lMntl?el7zntic.r, Ib1. 12, N o .  1, 1979-80, pages 2-8. The 
L-game has been marketed in the United States by JA%BO, Inc., 
Atlanta, Georgia, and in Englaild by Just Games, London. 

15. THE DRAGON CURVE AND OTHER PROBLEMS 

SIKCE I 1KTRODUC;ED the dragon curve, the term "fractal," coined 
by Benoit Mandelbrot, has becoille standard, and of course the 
dragon curve is a fractal. Books on fractals, including Man- 
delbrot's classic A.nrtnl C;eon~~trj  of il~ntzrw (Freeman, 1982), are 
appearing so rapidly that I will make no effort to list any here. 
selective bibliography can be fbund at the end of' Chapter 3, 
"Mandelbi-ot's Fractals," in niy Penrose Tiles to E t~pdoor  Ciphers 
(Freeman, 1988). For fasciilating generalizatioi~s of the dragon 
curie to three dimensions, see "T\:ire Bending," by Michel 



Merldes France and J. 0. Shallit, 111 the Jou7rzal of Coml~znatol-zal 
Tl7cjo?j, Serles A, \'ol..5O, Januai? 1989, pages 1-23. 

The Sczentzjc A?ne7zcn?z column on giav codes, cited in the 
answer to Probleill 5, 1s repr~nted in my Knotted Dozighnuts and 
Otlzcl ~2.latlzeinatzcal Entel-tc~zninents (Freeman, 1986). 

16. COLORED TRIANGLES AND CUBES 

A TOKYO CORRESPONDENT infor~ried me in 1974 that tlle Dio- 
phantine equation at the top of page 234 had beell studied by 
Professor Uchiyama (I do not know his first name). Uchiyama 
reportedly sho~\ied that beyond 717 = 24 there are at   no st two solu- 
tions. He conjectures that actually there are none. 

I irlerltiorled that I had earlier ~vritten about MacYIallon's set 
of 30 color cubes in my i\'eicl i\i[ntlze?~zaticnl Div~l-sions fionz Scien- 
tific ilmel-ican, no~v available in paper covers from the University 
of Chicago Press. I returned to tlle 30 cubes in 111)- Septenlber 
1978 colunln, reprinted in lily Frnrt~11 IVIILSZC, Hjfiel-cads, and  
iClo)-e, ~vhere I give some elegant new results discovered by John  
H. Comvav. 

17. TREES 

ISAAC Xsrnro\., ~vho  obtained his doctorate in biochemisti?, wrote 
to tell me ho~v neatly the trees depicted in Figure 119 count hy- 
drocarborl isomers. (Isonlers are coirlpourlds ~vith the same 
number of atoms of each element, but with the atoms different- 
ly linked.) Open carbon chains are trees in which no point can 
be connected to illore than four others. The unique t~vo-point 
tree corresponds to ethane; the unique three-point tree to 
propane. The two four-point trees give butane and its isomer 
isobutane. The three five-point trees provide three isomers: pen- 
tane, isopentane, and neopentane. The first five of the six six- 
point trees correspond to normal Ilexane, 2-methyl pentane, 3- 
methyl pentane, 2,3-dimethyl butane, and 2,2-dimethyl butane. 
Because the sixth tree has a point joined to five others, it corre- 
sponds to no hydrocarbon. 

Hydi-ocarbon nlolecules can link to foi-111 rings "to further 
complicate matters," as Asiniov put it, "and arliuse the recrea- 
tional mathematician." Asirno\r \vonclers if graph theor). nlade 
it possible for chemists to decide that a molecule with forty car- 



bon atoms and eighty-two hydrogen atoms has precisely
62,491,178,805,831 isomers.

18. DICE

FOR SOME MORE startling curiosities about dice, see the discus-
sion of nontransitive dice in Chapter 5 of my Wheels, Life, and
Other Mathematical Diversions (Freeman, 1983), and Sicherman’s
dice in Chapter 19 of my Penrose Tiles to Trapdoor Ciphers
(Freeman, 1989).

19.  EVERYTHING

IT IS SURELY APPARENT from my chapter on everything that I am
an unabashed Platonist in the following sense. I believe that
both the physical world and the abstract world of pure mathe-
matics have an existence that is not dependent on the existence
of human beings. If any readers are interested in my arguments
for this utterly commonplace view, held by everybody except a
small number of thinkers smitten by the notion that humanity is
the measure of all things, they can consult the first chapter of my
Whys of a Philosophical Scrivener; Part 1, Chapter 5; Part 2,
Chapter 34, of my Order and Surprise; and my Guest Comment in
the American Journal of Physics, April 1989, page 203.
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